Finite group algebras and their modules
著者
書誌事項
Finite group algebras and their modules
(London Mathematical Society lecture note series, 84)
Cambridge University Press, 1983
大学図書館所蔵 全54件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 265-272
Includes index
内容説明・目次
内容説明
Originally published in 1983, the principal object of this book is to discuss in detail the structure of finite group rings over fields of characteristic, p, P-adic rings and, in some cases, just principal ideal domains, as well as modules of such group rings. The approach does not emphasize any particular point of view, but aims to present a smooth proof in each case to provide the reader with maximum insight. However, the trace map and all its properties have been used extensively. This generalizes a number of classical results at no extra cost and also has the advantage that no assumption on the field is required. Finally, it should be mentioned that much attention is paid to the methods of homological algebra and cohomology of groups as well as connections between characteristic 0 and characteristic p.
目次
- Preface
- Part I. The Structure of Group Algebras: 1. Idempotents in rings. Liftings
- 2. Projective and injective modules
- 3. The radical and artinian rings
- 4. Cartan invariants and blocks
- 5. Finite dimensional algebras
- 6. Duality
- 7. Symmetry
- 8. Loewy series and socle series
- 9. The p. i. m.'s
- 10. Ext
- 11. Orders
- 12. Modular systems and blocks
- 13. Centers
- 14. R-forms and liftable modules
- 15. Decomposition numbers and Brauer characters
- 16. Basic algebras and small blocks
- 17. Pure submodules
- 18. Examples
- Part II. Indecomposable Modules and Relative Projectivity: 1. The trace map and the Nakayama relations
- 2. Relative projectivity
- 3. Vertices and sources
- 4. Green Correspondence
- 5. Relative projective homomorphisms
- 6. Tensor products
- 7. The Green ring
- 8. Endomorphism rings
- 9. Almost split sequences
- 10. Inner products on the Green ring
- 11. Induction from normal subgroups
- 12. Permutation models
- 13. Examples
- Part III. Block Theory: 1. Blocks, defect groups and the Brauer map
- 2. Brauer's First Main Theorem
- 3. Blocks of groups with a normal subgroup
- 4. The Extended First main Theorem
- 5. Defect groups and vertices
- 6. Generalized decomposition numbers
- 7. Subpairs
- 8. Characters in blocks
- 9. Vertices of simple modules
- 10. Defect groups
- Appendices
- References
- Index.
「Nielsen BookData」 より