Arbeitstagung Bonn, 1984 : proceedings of the meeting held by the Max-Planck-Institut für Mathematik, Bonn, June 15-22, 1984
Author(s)
Bibliographic Information
Arbeitstagung Bonn, 1984 : proceedings of the meeting held by the Max-Planck-Institut für Mathematik, Bonn, June 15-22, 1984
(Lecture notes in mathematics, 1111)
Springer-Verlag, c1985
- : gw
- : us
Available at 71 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Mathematisches Institut der Universität und Max-Planck-Institut für Mathematik, Bonn - vol. 5."
Includes bibliographies
Description and Table of Contents
Table of Contents
to non commutative differential geometry.- Special values of hecke L-functions and abelian integrals.- An introduction to infinitesimal variations of hodge structures.- New dimensions in geometry.- Commentary on the article of manin.- The mandelbrot set in a model for phase transitions.- Recent developments in representation theory.- Loop groups.- Some recent results in complex manifold theory related to vanishing theorems for the semipositive case.- Groups and group functors attached to kac-moody data.- Modular points, modular curves, modular surfaces and modular forms.- Eigenvalues of the dirac operator.- Manifolds of non positive curvature.- Metrics with holonomy G2 or spin (7).- On riemannian metrics adapted to three-dimensional contact manifolds.- 4-Manifolds with indefinite intersection form.- Arithmetische Kompaktifizierung des Modulraums der abelschen Varietaten.- The schottky problem.- Vojta's conjecture.- A counterexample in 3-space to a conjecture of H. Hopf.- The topology and geometry of the moduli space of Riemann surfaces.- Addendum.
by "Nielsen BookData"