Nonlinear semigroups, partial differential equations and attractors : proceedings of a symposium held in Washington, D.C., August 5-8, 1985
著者
書誌事項
Nonlinear semigroups, partial differential equations and attractors : proceedings of a symposium held in Washington, D.C., August 5-8, 1985
(Lecture notes in mathematics, 1248)
Springer-Verlag, c1987
- : gw
- : us
大学図書館所蔵 全68件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Proceedings of the Symposium on Nonlinear Semigroups, Partial Differential Equations, and Attractors held at Howard University in Washington, D.C." -- Pref
内容説明・目次
内容説明
The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.
目次
Convergence properties of strongly-damped semilinear wave equations.- Numerical solution of certain nonlinear parabolic partial differential equations.- The explicit solution of nonlinear ordinary and partial differential equations I. Conceptual ideas.- Uniform boundness and genralized inverses in liapunov-schmidt method for subharmonics.- Existence of radially symmetric solutions of strongly damped wave equations.- Strongly damped semilinear second order equations.- Nonlinear semigroup theory and viscosity solutions of Hamilton-Jacobi PDE.- Evolution equations with nonlinear boundary conditions.- Asymptotically smooth semigroups and applications.- The principle of spatial averaging and inertial manifolds for reaction-diffusion equations.- Applications of semigroup theory to reaction-diffusion systems.- Ultrasingularities in nonlinear waves.- A reaction-hyperbolic system in physiology.- Compact perturbations of linear m-dissipative operators which lack Gihman's property.- Two compactness lemmas.- The riccati equation: When nonlinearity reduces to linearity.
「Nielsen BookData」 より