X-ray emission of auroral electrons and magnetospheric dynamics
著者
書誌事項
X-ray emission of auroral electrons and magnetospheric dynamics
(Physics and chemistry in space, v. 14)
Springer-Verlag, c1986
- タイトル別名
-
Rentgenovskoe izluchenie avroralʹnykh ėlektronov i dinamika magnitosfery
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [201]-216
Includes index
内容説明・目次
- 巻冊次
-
ISBN 9783540153351
内容説明
The experimental study of magnetospheric processes consists of several disci- plines or methods, developing in two general directions. The first, internal trend covers the progress in experimental techniques and methods and re- search specific to this discipline. The other trend combines with other methods in a mutual attempt at understanding the boiling whirlpool of the disturbed magnetosphere. Investigations of auroral X-rays began after Van Allen's (1957) discovery of hard radiation in the upper atmosphere of the auroral zone, and are based on high latitude balloon observations. Scientific apparatus, payload equip- ment, and particular questions of scientific ballooning are discussed in Chap- ter 1. Chapter 2 concludes the internal trend of the subject by describing the problems of X-ray generation at the boundary of the atmosphere and propa- gation downward to balloon altitudes. Auroral X-rays are closely related to most of the processes of the disturbed magnetosphere through energetic auroral electrons; precipitating into the at- mosphere, the latter create bremsstrahlung photons able to penetrate to an at- mospheric depth of 10- 20 g cm - 2.
In quiet periods auroral electron flux ex- ists only in embryo, as a hot plasma layer at the inner edge of the plasma sheet: in general it is a transient phenomenon caused by magnetospheric distur- bances and carrying valuable information of the magnetospheric dynamics.
目次
1 Balloon Experiment Technique.- 1.1 Launching Facilities.- 1.2 The Balloon in Space Research.- 1.3 Auroral X-Ray Scintillator Spectrometer.- 1.4 Payload Equipment.- 1.5 Ground-Based Support of Balloon Experiments.- 2 Auroral X-Rays: Generation and Transfer into the Atmosphere.- 2.1 Introduction.- 2.2 Photon Generation at the Atmospheric Boundary.- 2.2.1 Initial Conditions and Basic Equations.- 2.2.2 Results of Calculation.- 2.3 Calculation of X-Ray Propagation in the Atmosphere.- 2.3.1 Method of Calculation (Monte Carlo) for Homogeneous Precipitation.- 2.3.2 Calculation of Localized Precipitations.- 2.4 Transformation of X-Ray Flux and Energy Spectrum in the Atmosphere for Extended Regions of Precipitation.- 2.5 Results of Calculation of Photon Transport from Local Sources.- 2.6 X-Ray Angular Distribution.- 2.7 Calculation of Scintillator Spectrometer Efficiency.- 2.8 Practical Example of Electron Spectra Reconstruction.- 2.9 Conclusions and Recommendations.- 3 The Structure of Auroral X-Ray Events and Electron Fluxes in the Magnetosphere.- 3.1 General Features of X-Ray Events.- 3.1.1 Spatial and Temporal Characteristics.- 3.1.2 Energy Spectrum and the Relationship with Magnetospheric Activity.- 3.2 Classification of Auroral X-Ray Forms.- 3.3 Charged Particles in the Magnetosphere.- 3.3.1 The Magnetosphere Configuration.- 3.3.2 The Plasma Sheet.- 3.3.3 Trapped Radiation.- 3.4 Auroral Radiation.- 4 Auroral Electrons in the Midnight Sector and Magnetospheric Disturbances.- 4.1 Dynamic and Energetic Structure of the Magnetospheric Substorm.- 4.1.1 Substorm Phases.- 4.1.2 Energy Scheme of a Substorm. Case Study N1.- 4.2 Growth Phase.- 4.2.1 Auroral X-Ray Growth Phase Events.- 4.2.2 Growth Phase. Case Studies N1, N2, N3.- 4.2.3 The Problem of the Source.- 4.3 Breakup - An Explosive Onset in the Active Phase of a Substorm.- 4.3.1 X-Ray Breakup Events.- 4.3.2 Satellite Observations. Case Study N2.- 4.3.3 Tail Reconnection Models of Breakup.- 4.3.4 Alternative Models.- 4.4 Active Phase. Convection.- 4.4.1 Large-Scale Phenomena.- 4.4.2 Hard-Spectrum X-Ray Events.- 4.4.3 Case Study N1.- 4.5 Active Phase. Expansion.- 4.5.1 Discrete Aurora and Associated Phenomena.- 4.5.2 Long-Duration Precipitation Events. Case Study N2.- 4.5.3 Magnetospheric Tail During Substorm.- 4.5.4 The Boundary Between the Trapping and Tail Regions. Case Study N3.- 4.6 Auroral Region Model of Electron Acceleration and Precipitation During Substorms.- 5 Pulsations and Microbursts of Drifting Auroral Electron Precipitation.- 5.1 Morning Bay-Like Precipitations.- 5.2 Long-Period X-Ray Pulsations (1-20 min).- 5.2.1 The Morphology of Slow Pulsations.- 5.2.2 Ps6 Pulsations: Case Study N3.- 5.2.3 A Diffusion Model of Slow Variation of Particle Precipitation.- 5.3 Fast Pulsations and Impulses (3-60 s).- 5.4 Auroral X-Ray Microbursts.- 5.5 Precipitations During SC and SI.- 5.6 Interrelation of Pulsating Structures of Precipitating Auroral Electrons.- 5.7 Classification of the Microstructure of Electron Precipitation.- Conclusion.- References.- Subjectlndex.
- 巻冊次
-
ISBN 9783642704000
内容説明
The experimental study of magnetospheric processes consists of several disci plines or methods, developing in two general directions. The first, internal trend covers the progress in experimental techniques and methods and re search specific to this discipline. The other trend combines with other methods in a mutual attempt at understanding the boiling whirlpool of the disturbed magnetosphere. Investigations of auroral X-rays began after Van Allen's (1957) discovery of hard radiation in the upper atmosphere of the auroral zone, and are based on high latitude balloon observations. Scientific apparatus, payload equip ment, and particular questions of scientific ballooning are discussed in Chap ter 1. Chapter 2 concludes the internal trend of the subject by describing the problems of X-ray generation at the boundary of the atmosphere and propa gation downward to balloon altitudes. Auroral X-rays are closely related to most of the processes of the disturbed magnetosphere through energetic auroral electrons; precipitating into the at mosphere, the latter create bremsstrahlung photons able to penetrate to an at mospheric depth of 10- 20 g cm - 2. In quiet periods auroral electron flux ex ists only in embryo, as a hot plasma layer at the inner edge of the plasma sheet: in general it is a transient phenomenon caused by magnetospheric distur bances and carrying valuable information of the magnetospheric dynamics.
目次
1 Balloon Experiment Technique.- 1.1 Launching Facilities.- 1.2 The Balloon in Space Research.- 1.3 Auroral X-Ray Scintillator Spectrometer.- 1.4 Payload Equipment.- 1.5 Ground-Based Support of Balloon Experiments.- 2 Auroral X-Rays: Generation and Transfer into the Atmosphere.- 2.1 Introduction.- 2.2 Photon Generation at the Atmospheric Boundary.- 2.2.1 Initial Conditions and Basic Equations.- 2.2.2 Results of Calculation.- 2.3 Calculation of X-Ray Propagation in the Atmosphere.- 2.3.1 Method of Calculation (Monte Carlo) for Homogeneous Precipitation.- 2.3.2 Calculation of Localized Precipitations.- 2.4 Transformation of X-Ray Flux and Energy Spectrum in the Atmosphere for Extended Regions of Precipitation.- 2.5 Results of Calculation of Photon Transport from Local Sources.- 2.6 X-Ray Angular Distribution.- 2.7 Calculation of Scintillator Spectrometer Efficiency.- 2.8 Practical Example of Electron Spectra Reconstruction.- 2.9 Conclusions and Recommendations.- 3 The Structure of Auroral X-Ray Events and Electron Fluxes in the Magnetosphere.- 3.1 General Features of X-Ray Events.- 3.1.1 Spatial and Temporal Characteristics.- 3.1.2 Energy Spectrum and the Relationship with Magnetospheric Activity.- 3.2 Classification of Auroral X-Ray Forms.- 3.3 Charged Particles in the Magnetosphere.- 3.3.1 The Magnetosphere Configuration.- 3.3.2 The Plasma Sheet.- 3.3.3 Trapped Radiation.- 3.4 Auroral Radiation.- 4 Auroral Electrons in the Midnight Sector and Magnetospheric Disturbances.- 4.1 Dynamic and Energetic Structure of the Magnetospheric Substorm.- 4.1.1 Substorm Phases.- 4.1.2 Energy Scheme of a Substorm. Case Study N1.- 4.2 Growth Phase.- 4.2.1 Auroral X-Ray Growth Phase Events.- 4.2.2 Growth Phase. Case Studies N1, N2, N3.- 4.2.3 The Problem of the Source.- 4.3 Breakup - An Explosive Onset in the Active Phase of a Substorm.- 4.3.1 X-Ray Breakup Events.- 4.3.2 Satellite Observations. Case Study N2.- 4.3.3 Tail Reconnection Models of Breakup.- 4.3.4 Alternative Models.- 4.4 Active Phase. Convection.- 4.4.1 Large-Scale Phenomena.- 4.4.2 Hard-Spectrum X-Ray Events.- 4.4.3 Case Study N1.- 4.5 Active Phase. Expansion.- 4.5.1 Discrete Aurora and Associated Phenomena.- 4.5.2 Long-Duration Precipitation Events. Case Study N2.- 4.5.3 Magnetospheric Tail During Substorm.- 4.5.4 The Boundary Between the Trapping and Tail Regions. Case Study N3.- 4.6 Auroral Region Model of Electron Acceleration and Precipitation During Substorms.- 5 Pulsations and Microbursts of Drifting Auroral Electron Precipitation.- 5.1 Morning Bay-Like Precipitations.- 5.2 Long-Period X-Ray Pulsations (1-20 min).- 5.2.1 The Morphology of Slow Pulsations.- 5.2.2 Ps6 Pulsations: Case Study N3.- 5.2.3 A Diffusion Model of Slow Variation of Particle Precipitation.- 5.3 Fast Pulsations and Impulses (3-60 s).- 5.4 Auroral X-Ray Microbursts.- 5.5 Precipitations During SC and SI.- 5.6 Interrelation of Pulsating Structures of Precipitating Auroral Electrons.- 5.7 Classification of the Microstructure of Electron Precipitation.- Conclusion.- References.- Subjectlndex.
「Nielsen BookData」 より