Lie algebras and related topics : proceedings of a conference held at New Brunswick, New Jersey, May 29-31, 1981
Author(s)
Bibliographic Information
Lie algebras and related topics : proceedings of a conference held at New Brunswick, New Jersey, May 29-31, 1981
(Lecture notes in mathematics, 933)
Springer-Verlag, 1982
- : Berlin
- : New York
Available at 73 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library & Science Information Center, Osaka Prefecture University
: BerlinNDC8:410.8||||10007289734
Note
Includes bibliographies
Description and Table of Contents
Table of Contents
Representations of rank one lie algebras of characteristic p.- The classification problem for simple lie algebras of characteristic p.- Normalizer towers in semisimple Lie algebras.- A classification of pointed An-modules.- Representations of affine lie algebras, hecke modular forms and korteweg-De vries type equations.- A note on the centers of lie algebras of classical type.- Some problems on infinite dimensional lie algebras and their representations.- Some simple Lie algebras of characteristic 2.- Affine Lie algebras and combinatorial identities.- An embedding of PSL(2,13) in ? 0.- Affine lie algebras and theta-functions.- Resolutions of irreducible highest weight modules over infinite dimensional graded lie algebras.- Representations of lie p-algebras.- Noncocommutative sequences of divided powers.- Eclidean lie algebras are universal central extensions.- The fitting and jordan structure of affine semigroups.
by "Nielsen BookData"