Constrained global optimization : algorithms and applications
Author(s)
Bibliographic Information
Constrained global optimization : algorithms and applications
(Lecture notes in computer science, 268)
Springer-Verlag, c1987
- : gw
- : us
Available at 53 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Description
Global optimization is concerned with the characterization and computation of global minima or maxima of nonlinear functions. Such problems are widespread in mathematical modeling of real world systems for a very broad range of applications. The applications include economies of scale, fixed charges, allocation and location problems, quadratic assignment and a number of other combinatorial optimization problems. More recently it has been shown that certain aspects of VLSI chip design and database problems can be formulated as constrained global optimization problems with a quadratic objective function. Although standard nonlinear programming algorithms will usually obtain a local minimum to the problem , such a local minimum will only be global when certain conditions are satisfied (such as f and K being convex).
Table of Contents
Convex sets and functions.- Optimality conditions in nonlinear programming.- Combinatorial optimization problems that can be formulated as nonconvex quadratic problems.- Enumerative methods in nonconvex programming.- Cutting plane methods.- Branch and bound methods.- Bilinear programming methods for nonconvex quadratic problems.- Large scale problems.- Global minimization of indefinite quadratic problems.- Test problems for global nonconvex quadratic programming algorithms.
by "Nielsen BookData"