Computational limitations of small-depth circuits
著者
書誌事項
Computational limitations of small-depth circuits
(ACM doctoral dissertation awards, 1986)
MIT Press, c1987
大学図書館所蔵 全25件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Originally presented as the author's thesis (Ph.D.)--Massachusetts Institute of Technology, 1986
Bibliography: p. [79]-82
Includes index
内容説明・目次
内容説明
Proving lower bounds on the amount of resources needed to compute specific functions is one of the most active branches of theoretical computer science. Significant progress has been made recently in proving lower bounds in two restricted models of Boolean circuits. One is the model of small depth circuits, and in this book Johan Torkel Hastad has developed very powerful techniques for proving exponential lower bounds on the size of small depth circuits' computing functions.The techniques described in "Computational Limitations for Small Depth Circuits" can be used to demonstrate almost optimal lower bounds on the size of small depth circuits computing several different functions, such as parity and majority. The main tool used in the proof of the lower bounds is a lemma, stating that any AND of small fanout OR gates can be converted into an OR of small fanout AND gates with high probability when random values are substituted for the variables.Hastad also applies this tool to relativized complexity, and discusses in great detail the computation of parity and majority in small depth circuits.Contents: Introduction. Small Depth Circuits. Outline of Lower Bound Proofs. Main Lemma. Lower Bounds for Small Depth Circuits. Functions Requiring Depth k to Have Small Circuits. Applications to Relativized Complexity. How Well Can We Compute Parity in Small Depth? Is Majority Harder than Parity? Conclusions.John Hastad is a postdoctoral fellow in the Department of Mathematics at MIT C"omputational Limitations of Small Depth Circuits" is a winner of the 1986 ACM Doctoral Dissertation Award.
「Nielsen BookData」 より