Electrical potentials in biological membrane transport
著者
書誌事項
Electrical potentials in biological membrane transport
(Molecular biology, biochemistry and biophysics, v. 33)
Springer, 1981
- Berlin
- New York
大学図書館所蔵 全11件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [77]-81
Includes index
内容説明・目次
内容説明
The material of this volume was originally planned to be incorporated in the preceding monograph Mechanics and Energetics of Biological Transport. A separate and coherent treatment ofthe variety of bioelectrical phenomena was considered preferable, mainly for didactic reasons. Usually, the biologist has to gather the principles of bioelectricity he needs from different sources and on different levels. The present book intends to provide these principles in a more uniform context and in a form adjusted to the problems of a biol- ogist, rather than of a physicist or electrical engineer. The main emphasis is put on the molecular aspect by relating the bioelectrical phenomena, such as the membrane diffusion potentials, pump potentials, or redox potentials, to the properties of the membrane concerned, and, as far as pOSSible, to specific steps of transport and metabolism of ions and nonelectrolytes. Little space is devoted to the familiar and widely used representation of bioelectrical phe- nomena in terms of electrical networks, of equivalent circuits with batteries, resistances, capacities etc.
In order to elucidate the basic principles, the formal treatment is kept as simple as pOSSible, using highly Simplified models, based on biological systems. The corresponding equations are derived in two ways: kinetically, i. e. in terms of the Law of Mass Action, as well as energetically, i. e. , in terms of Nonequilibrium Thermodynamics.
目次
1 Origin of Electrical Potentials.- 1.1 Equilibrium Potentials.- 1.1.1 The Gibbs-Donnan Potential.- 1.1.2 Surface Potentials (Phase Boundary Potentials).- 1.2 Membrane Diffusion Potentials.- 1.2.1 General.- 1.2.2 Systems with One Electrolyte.- 1.2.3 Systems with Several Electrolytes.- 1.2.3.1 Approximation Approaches.- 1.2.3.2 The Statistical Approach.- 1.2.3.3 The Goldman-Hodgin-Katz Equation.- 1.2.4 Stabilization of Membrane Diffusion Potential Differences.- 1.3 Electrogenic Pump Potentials.- 1.3.1 General.- 1.3.2 Formal Treatment of Pump PD's.- 1.3.2.1 Treatment in Terms of the Law of Mass Action (LMA).- 1.3.2.2 Treatment in Terms of Thermodynamic of Irreversible Processes (TIP).- 1.4 Membrane Potentials in Secondary Active Transport.- 1.4.1 Ionic Symporters and Antiporters.- 1.4.2 Ion-linked Cotransport of Organic Solutes.- 1.5 Redox Potentials in Membrane Transport.- 2 Control of Electric Potentials - Maintenance and Modulation.- 2.1 Physiological Mechanisms.- 2.2 Experimental Modulations of PD.- 2.2.1 Replacement of Permeant Ion Species.- 2.2.2 Ionophores.- 2.2.2.1 Carrier-like and Channel-like Ionophores.- 2.2.2.2 Rheogenic and Non-Rheogenic Ionophores..- 2.2.2.3 The Electric PD Under the Influence of Ionophores.- 2.2.3 Channel Blockers.- 2.2.4 Modulating and Mimicking Electrogenie Pumps.- 3 Some Problems Associated with the Measurement of Electric Membrane Potentials.- 3.1 General.- 3.2 Microelectrodes.- 3.3 Distribution of Passive Permeant Ions.- 3.4 Fluorescent Dyes.- 3.5 Other Membrane Probes.- References.
「Nielsen BookData」 より