Elastic wave propagation in transversely isotropic media
著者
書誌事項
Elastic wave propagation in transversely isotropic media
(Mechanics of elastic and inelastic solids, 4)(Monographs and textbooks on mechanics of solids and fluids)
M. Nijhoff Publishers , Distributors for the U.S. and Canada, Kluwer Boston, 1983
大学図書館所蔵 全27件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and indexes
内容説明・目次
内容説明
In this monograph I record those parts of the theory of transverse isotropic elastic wave propagation which lend themselves to an exact treatment, within the framework of linear theory. Emphasis is placed on transient wave motion problems in two- and three-dimensional unbounded and semibounded solids for which explicit results can be obtained, without resort to approximate methods of integration. The mathematical techniques used, many of which appear here in book form for the first time, will be of interest to applied mathematicians, engeneers and scientists whose specialty includes crystal acoustics, crystal optics, magnetogasdynamics, dislocation theory, seismology and fibre wound composites. My interest in the subject of anisotropic wave motion had its origin in the study of small deformations superposed on large deformations of elastic solids. By varying the initial stretch in a homogeneously deformed solid, it is possible to synthesize aniso tropic materials whose elastic parameters vary continuously. The range of the parameter variation is limited by stability considerations in the case of small deformations super posed on large deformation problems and (what is essentially the same thing) by the of hyperbolicity (solids whose parameters allow wave motion) for anisotropic notion solids. The full implication of hyperbolicity for anisotropic elastic solids has never been previously examined, and even now the constraints which it imposes on the elasticity constants have only been examined for the class of transversely isotropic (hexagonal crystals) materials.
目次
1. Basic equations.- 1. The Linearized Equations of Motion of an Anisotropic Elastic Solid.- 2. The Effect on the Equations of Motion of a Coordinate Rotation.- 3. The Elasticities for a Transversely Isotropic Solid.- 4. The Constraints on the c??’s of Positive Definiteness.- 5. The Constraints on the c??’s of Strong Ellipticity.- 6. The Uncoupled Equations of Motion in Two-Dimensions.- 7. The Uncoupled Equations of Motion in Three-Dimensions.- 8. Some Other Transversely Isotropic Continuum Theories.- 2. Wave front shape caused by a point source in unbounded media.- I Two Space Dimensions.- II Three Space Dimensions.- 3. Green’s tensor for the displacement field in unbounded media.- I Two Space Dimensions.- II Three Space Dimensions.- 4. Surface motion of a two-dimensional half-space (Lamb’s problem).- 1. Formulation of the Problem.- 2. Integral Transform Representation of the Solution When the Fourier Inversion Path is Free of Branch Points.- 3. Transform Inversion for Materials Satisfying Condition (1) of Table 11.- 4. Transform Inversion for Materials Satisfying Condition (2) of Table 11.- 5. Transform Inversion for Materials Satisfying Condition (3) of Table 11.- 6. Graph of the Surface Displacements for Some Hexagonal Crystals.- 5. Epicenter and epicentral-axis motion of a three-dimensional half-space.- 1. Problem Formulation for the Epicenter Motion of a Half-Space Due to the Sudden Application of a Buried Point Source.- 2. Transform Inversion at the Epicenter for Materials Satisfying Condition (1) of Table 11.- 3. Discussion of the ?-Plane Branch Points and the Cagniard Path When the Real ?-Axis is Not Free of Branch Points.- 4. Transform Inversion at the Epicenter for Materials Satisfying Conditions (2) and (3) of Table 11.- 5. Discussion of theEpicenter Vertical Displacement for Some Hexagonal Crystals.- 6. Vertical Displacement Along the Epicentral-Axis Due to a Surface Point Load Acting Normal to the Surface.- 7. Body Forces Equivalent to Internal Discontinuities in an Anisotropic Elastic Solid.- References.- Author index.
「Nielsen BookData」 より