Autowave processes in kinetic systems : spatial and temporal self-organization in physics, chemistry, biology, and medicine

Bibliographic Information

Autowave processes in kinetic systems : spatial and temporal self-organization in physics, chemistry, biology, and medicine

V.A. Vasiliev ... [et al.]

(Mathematics and its applications, Soviet series)

D. Reidel , Distributors for the U.S.A. and Canada, Kluwer Academic Publishers, c1987

Available at  / 23 libraries

Search this Book/Journal

Note

Translated from the Russian

"Published in 1987 by VEB Deutscher Verlag der Wissenschaften, Berlin in co-edition with D. Reidel Publishing Company, Dordrecht, Holland"--T.p. verso

Bibliography: p. [245]-260

Includes index

Description and Table of Contents

Description

Probably, we are obliged to Science, more than to any other field of the human activity, for the origin of our sense that collective efforts are necessary indeed. F. Joliot-Curie The study of autowave processes is a young science. Its basic concepts and methods are still in the process of formation, and the field of its applications to various domains of natural sciences is expanding continuously. Spectacular examples of various autowave processes are observed experimentally in numerous laboratories of quite different orientations, dealing with investigations in physics, chemistry and biology. It is O1). r opinion, however, that if a history of the discovery of autowaves will he written some day its author should surely mention three fundamental phenomena which were the sources of the domain in view. "Ve mean combustion and phase transition waves, waves in chemical reactors where oxidation-reduction processes take place, and propagation of excitations in nerve fibres. The main tools of the theory of autowave processes are various methods used for investigating nonlinear discrete or distributed oscillating systems, the mathe matical theory of nonlinear parabolic differential equations, and methods of the theory of finite automata. It is noteworthy that the theory of autowave,. , has been greatly contributed to be work of brilliant mathematicians who anticipated the experimental discoveries in their abstract studies. One should mention R. Fishel' (1937), A. N. Kolmogorov, G. 1. Petrovskii, and N. S. Piskunov (1937), N. Wiener and A. Rosenbluth (1946), A. Turing (1952).

Table of Contents

1 Autowave processes and their role in natural sciences.- 1.1 Autowaves in non-equilibrium systems.- 1.2 Mathematical model of an autowave system.- 1.3 Classification of autowave processes.- 1.4 Basic experimental data.- 2 Physical premises for the construction of basic models.- 2.1 Finite interaction velocity. Reduction of telegrapher's equations.- 2.2 Nonlinear diffusion equation. Finite diffusion velocity.- 2.3 Diffusion in multicomponent homogeneous systems.- 2.4 Integro-differential equations and their reduction to the basic model.- 2.5 Anisotropic and dispersive media.- 2.6 Examples of basic models for autowave systems.- 3 Ways of investigation of autowave systems.- 3.1 Basic stages of investigation.- 3.2 A typical qualitative analysis of stationary solutions in the phase plane.- 3.3 Study of the stability of stationary solutions.- 3.4 Small-parameter method.- 3.5 Axiomatic approach.- 3.6 Discrete models.- 3.7 Fast and slow phases of space-time processes.- 3.8 Group-theoretical approach.- 3.9 Numerical experiment.- 4 Fronts and pulses: elementary autowave structures.- 4.1 A stationary excitation front.- 4.2 A typical transient process.- 4.3 Front velocity pulsations.- 4.4 Stationary pulses.- 4.5 The formation of travelling pulses.- 4.6 Propagation of pulses in a medium with smooth inhomogeneities.- 4.7 Pulses in a medium with a nonmonotonic dependence v = v(y).- 4.8 Pulses in a trigger system.- 4.9 Discussion.- 5 Autonomous wave sources.- 5.1 Sources of echo and fissioning front types.- 5.2 Generation of a TP at a border between "slave" and "trigger" media.- 5.3 Stable leading centres.- 5.4 Standing waves.- 5.5 Reverberators: a qualitative description.- 6 Synchronization of auto-oscillations in space as a self-organization factor.- 6.1 Synchronization in homogeneous systems.- 6.2 Synchronization in inhomogeneous systems. Equidistant detuning case.- 6.3 Complex autowave regimes arising when synchronization is violated.- 6.4 A synchronous network of auto-oscillators in modern radio electronics.- 7 Spatially inhomogeneous stationary states: dissipative structures.- 7.1 Conditions of existence of stationary inhomogeneous solutions.- 7.2 Bifurcation of solutions and quasi-harmonical structures.- 7.3 Multitude of structures and their stability.- 7.4 Contrast dissipative structures.- 7.5 Dissipative structures in systems with mutual diffusion.- 7.6 Localized dissipative structures.- 7.7 Self-organization in combustion processes.- 8 Noise and autowave processes.- 8.1 Sources of noise in active kinetic systems and fundamental stochastic processes.- 8.2 Parametric and multiplicative fluctuations in local kinetic systems.- 8.3 The mean life time of the simplest ecological prey-predator system.- 8.4 Internal noise in distributed systems and spatial self-organization.- 8.5 External noise and dissipative structures - linear theory.- 8.6 Nonlinear effects - the two-box model.- 8.7 Wave propagation and phase transitions in media with distributed multiplicative noise.- 9 Autowave mechanisms of transport in living tubes.- 9.1 Autowaves in organs of the gastrointestinal tract.- 9.2 Waves in small blood-vessels with muscular walls.- 9.3 Autowave phenomena in plasmodia of Myxomycetes.- Concluding Remarks.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BA01041798
  • ISBN
    • 9027723796
  • LCCN
    86024879
  • Country Code
    ne
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Original Language Code
    rus
  • Place of Publication
    Dordrecht ; Tokyo,Norwell, MA
  • Pages/Volumes
    262 p.
  • Size
    23 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top