ADP-ribosylation of proteins : enzymology and biological significance

Bibliographic Information

ADP-ribosylation of proteins : enzymology and biological significance

F.R. Althaus, Ch. Richter

(Molecular biology, biochemistry and biophysics, v. 37)

Springer-Verlag, c1987

  • Berlin
  • New York

Available at  / 9 libraries

Search this Book/Journal

Note

Includes bibliographies and index

Description and Table of Contents

Description

In 1966, a paper entitled "On the formation of a novel adenylylic compound by enzymatic extracts of liver nuclei" from Paul Mandel's laboratory in Strasbourg, France, planted the seed for a rapidly growing new field of biological research focusing on ADP-ribosylation reactions. The development of this field over the past 2 decades reflects very much a modern trend of biological research. As more detailed knowledge accumulates, enigmatic phenomena turn into concepts which create their own enigmata. This process tends to favor the development of multiple, seemingly disconnected, research lines until simplicity emerges from chaos and unifying concepts substitute for controversy. It appears that the field of ADP-ribosylation reactions has not yet attained this latter stage. For example, with the identification of two different classes of ADP-ribosylation reactions, i.e., mono-ADP-ribosyla- tion and poly-ADP-ribosylation reactions, the field split very early into two separate branches of research. With the present volume, we have divided the task of reviewing these two classes of ADP- ribosylation accordingly, although their coexistence in eukaryotes may involve a closer functional linkage than hitherto recognized.

Table of Contents

I Poly-ADP-Ribosylation Reactions (F. R. Althaus).- 1 Poly(ADP-Ribose): Structure, Properties, and Quantification.- 1.1 Structure and Physicochemical Properties.- 1.2 Detection and Quantification of Poly(ADP-Ribose) in Biological Material.- References.- 2 Poly(ADP-Ribose) Biosynthesis.- 2.1 Natural Occurrence of Poly-ADP-Ribosylation Activity in Different Species, Tissues, and Cell Types.- 2.2 Subcellular Distribution of Poly-ADP-Ribosylation Activity.- 2.3 Purified Poly(ADP-Ribose) Polymerase.- 2.3.1 Physicochemical Properties.- 2.3.2 Domain Structure.- 2.3.3 Enzymological Properties.- References.- 3 Poly(ADP-Ribose) Catabolism.- 3.1 Enzymes Involved in Poly(ADP-Ribose) Catabolism.- 3.2 Factors Affecting Poly(ADP-Ribose) Catabolism.- References.- 4 Nuclear Acceptor Proteins for Poly(ADP-Ribose) and the Functional Consequences of Poly-ADP-Ribosylation on the Acceptor Species.- 4.1 Acceptor Proteins Identified in Reconstituted in Vitro Systems Involving Purified Poly(ADP-Ribose) Polymerase.- 4.2 Acceptor Proteins Identified in "Broken Cell" Systems or Polynucleosomal Preparations.- 4.3 Acceptor Proteins Which Have Been Identified in Intact Cells.- References.- 5 Poly-ADP-Ribosylation and Chromatin Organization.- 5.1 Introductory Comments.- 5.2 Electron Microscopy Investigations of Poly(ADP-Ribose)-Modified Chromatin.- 5.3 Biochemical Analyses of Poly(ADP-Ribose)-Modified Chromatin.- 5.4 Characterization of Sites Adjacent to Poly-ADP-Ribosylation in Bulk Chromatin.- References.- 6 Poly-ADP-Ribosylation in the Recovery of Mammalian Cells from DNA Damage.- 6.1 Introduction.- 6.2 DNA Damage, Activation of Poly(ADP-Ribose) Polymerase, and NAD Depletion in Mammalian Cells.- 6.3 Inhibitors of Poly(ADP-Ribose) Polymerase in the Investigation of the Role of Poly-ADP-Ribosylation Reactions in DNA-Excision Repair.- 6.3.1 Specificity of Poly(ADP-Ribose) Polymerase Inhibitors.- 6.3.2 Inhibitor Protocols Used.- 6.3.3 Consequences of Inhibited Poly(ADP-Ribose) Biosynthesis on Specific Reaction Steps in DNA-Excision Repair of Mammalian Cells.- 6.4 Effects of ADP-Ribosylation Inhibitors on the Clonal Survival of Carcinogen-Treated Cells.- 6.5 The Effects of ADP-Ribosylation Inhibitors on Chromosome Stability.- 6.6 Conclusions and Perspectives.- References.- 7 Poly(ADP-Ribose), DNA Synthesis, and Cell Cycle Progression.- 7.1 Proliferative Activity, Cell Cycle Progression, and Chromatin-Associated ADP-Ribosylation Activity.- 7.2 Poly-ADP-Ribosylation and DNA Synthesis in Isolated Nuclei.- 7.3 In Vitro Effects of Poly(ADP-Ribose) on Enzymes Acting on DNA.- References.- 8 Poly(ADP-Ribose), Cellular Differentiation, and Gene Expression.- 8.1 Introduction.- 8.2 Poly-ADP-Ribosylation in Differentiating Tissues and Cells.- 8.3 Evidence Derived from Inhibitor Studies.- 8.4 Possible Mechanism(s) of Poly(ADP-Ribose) Involvement in RNA Metabolism and Gene Expression.- References.- 9 Poly(ADP-Ribose) in Inherited Human Diseases and Experimental Disease Models.- 9.1 Glutamyl Ribose-5-Phosphate Storage Disease - A Hereditary Defect in the Catabolism of Poly(ADP-Ribosyl)ated Proteins.- 9.2 Collagen Vascular Diseases.- 9.2.1 Systemic Lupus Erythematosus (SLE).- 9.2.2 Other Collagen Vascular Diseases.- 9.3 Diseases Associated with Disorders of DNA Repair.- 9.3.1 Xeroderma Pigmentosum (XP).- 9.3.2 Ataxia Teleangiectasia (AT).- 9.3.3 Fanconi' A Hereditary Defect in the Catabolism of Poly(ADP-Ribosyl)ated Proteins.- 9.2 Collagen Vascular Diseases.- 9.2.1 Systemic Lupus Erythematosus (SLE).- 9.2.2 Other Collagen Vascular Diseases.- 9.3 Diseases Associated with Disorders of DNA Repair.- 9.3.1 Xeroderma Pigmentosum (XP).- 9.3.2 Ataxia Teleangiectasia (AT).- 9.3.3 Fanconi's Anemia (FA).- 9.4 Experimental Diabetes.- 9.5 Neoplastic Transformation in Vitro and in Vivo.- 9.5.1 In Vitro Transformation Systems.- 9.5.2 Transformation in Vivo.- References.- II Mono-ADP-Ribosylation Reactions (Ch. Richter).- 10 Signal Transduction.- 10.1 Introduction.- 10.2 Guanine Nucleotide-Binding Regulatory Proteins Involved in Signal Transduction.- 10.3 Adenylate Cyclase.- 10.4 Transducin.- 10.5 Receptor-Stimulated Phosphodiesterase Stimulation and Calcium Mobilization.- 10.6 The ras Gene Product.- References.- 11 Cholera Toxin.- 11.1 The Discovery of Cholera Toxin.- 11.2 The Structure of Cholera Toxin.- 11.3 Interaction with the Receptor.- 11.4 Membrane Penetration and Processing.- 11.5 Enzymatic Activities of Cholera Toxin: NAD + Hydrolysis and ADP-Ribosyltransfer.- 11.6 Activation of Adenylate Cyclase.- 11.7 Cofactor Requirement for ADP-Ribosylation of Adenylate Cyclase.- 11.8 ADP-Ribosylation of Transducin.- 11.9 Minor Protein Substrates of Cholera Toxin.- References.- 12 Pertussis Toxin.- 12.1 The Discovery of Pertussis Toxin.- 12.2 The Structure of Pertussis Toxin.- 12.3 Pertussis Toxin Activation and Processing.- 12.4 Pertussis Toxin-Sensitive Cells.- 12.5 Pertussis Toxin-Catalyzed ADP-Ribosylation of a Membrane Protein: Unique Modification of the Receptor-Adenylate Cyclase Signal Transduction.- 12.6 The Inhibitory Guanine Nucleotide-Binding Protein.- 12.7 How Does Pertussis Toxin Inhibit Adenylate Cyclase?.- 12.8 Pertussis Toxin: A Useful Tool in Cell Biology.- 12.8.1 Phospholipase Activation and Ca2+ Mobilization.- 12.8.2 Muscarinic and Other Receptors.- 12.8.3 Transducin.- 12.9 Novel Target Proteins of Pertussis Toxin.- References.- 13 Diphtheria Toxin.- 13.1 General Characteristics.- 13.2 Uptake of Diphtheria Toxin into the Cytosol.- 13.2.1 Structural and Functional Relationships.- 13.2.2 The Receptor.- 13.2.3 The Entry Mechanism.- 13.3 The ADP-Ribosylation Activity.- 13.4 Structural Studies.- References.- 14 Cellular Transferases.- 14.1 Introduction.- 14.2 ADP-Ribosyltransferases from Erythrocytes.- 14.3 ADP-Ribosylation of Elongation Factor-2 by a Cellular ADP-Ribosyltransferase.- 14.4 Nuclear ADP-Ribosyltransferases.- 14.5 ADP-Ribosyltransferase of Rat Hepatic Tissue.- 14.6 ADP-Ribosyltransferase of Xenopus laevis.- 14.7 Thyroid Membrane ADP-Ribosyltransferase Activity.- 14.8 ADP-Ribosylation of Renal Brush Border Membrane Proteins.- 14.9 ADP-Ribosyltransferase Activity in Skeletal Muscle.- 14.10 ADP-Ribosyltransferase Activity in Testicular Cells.- 14.11 ADP-Ribosyltransferase Activity in Cholinergic Nerve Terminals.- 14.12 ADP-Ribosyltransferase Activity in Rat Islets of Langerhans.- 14.13 ADP-Ribosylation of Stress-Inducible and Glucose-Regulated Proteins.- 14.14 ADP-Ribosylation in Adipocyte Plasma Membranes.- 14.15 Possible Function of Cellular ADP-Ribosyltransferases.- 14.16 Reversible Regulation of the Fe Protein of Nitrogenase from Rhodospirillum rubrum by ADP-Ribosylation.- References.- 15 Mitochondria.- 15.1 Introduction.- 15.2 Mitochondria and Ca2+.- 15.3 Oxidation and Hydrolysis of Mitochondrial Pyridine Nucleotides Parallel Ca2+ Release.- 15.4 Mitochondrial ADP-Ribosylation.- 15.4.1 ADP-Ribosylation in Mitochondrial Extracts.- 15.4.2 ADP-Ribosylation in the Inner Mitochondrial Membrane.- References.- 16 The Bond.- 16.1 Introduction.- 16.2 Ester-Specific ADP-Ribosylation.- 16.3 Diphthamide-Specific ADP-Ribosylation.- 16.4 Arginine-Specific ADP-Ribosylation.- 16.5 Cysteine-Specific ADP-Ribosylation.- 16.6 ADP-Ribosylation at Unknown Acceptor Sites.- 16.6.1 Studies with Eukaryotic Cells.- 16.6.2 Prokaryotic Systems.- 16.7 Nonenzymatic ADP-Ribosylation.- 16.8 Release of ADP-Ribose from Acceptor Sites.- 16.8.1 Enzymatic Processing.- 16.8.2 Chemical Release and Analysis.- 16.9 Proteins Modified by ADP-Ribose in Vivo.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top