Moments in mathematics
Author(s)
Bibliographic Information
Moments in mathematics
(Proceedings of symposia in applied mathematics, v. 37 . AMS short course lecture notes)
American Mathematical Society, c1987
Available at 32 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"Lecture notes prepared for the American Mathematical Society short course ... held in San Antonio, Texas, January 20-22, 1987" -- T.p. verso
Includes bibliographies and index
Description and Table of Contents
Description
Function theory, spectral decomposition of operators, probability, approximation, electrical and mechanical inverse problems, prediction of stochastic processes, the design of algorithms for signal-processing VLSI chips - these are among a host of important theoretical and applied topics illuminated by the classical moment problem.To survey some of these ramifications and the research which derives from them, the AMS sponsored the Short Course Moments in Mathematics at the Joint Mathematics Meetings, held in San Antonio, Texas, in January 1987. This volume contains the six lectures presented during that course. The papers are likely to find a wide audience, for they are expository, but nevertheless lead the reader to topics of current research. In his paper, Henry J. Landau sketches the main ideas of past work related to the moment problem by such mathematicians as Caratheodory, Herglotz, Schur, Riesz, and Krein and describes the way the moment problem has interconnected so many diverse areas of research.J. H. B.
Kemperman examines the moment problem from a geometric viewpoint which involves a certain natural duality method and leads to interesting applications in linear programming, measure theory, and dilations. Donald Sarason first provides a brief review of the theory of unbounded self-adjoint operators then goes on to sketch the operator-theoretic treatment of the Hamburger problem and to discuss Hankel operators, the Adamjan-Arov-Krein approach, and the theory of unitary dilations. Exploring the interplay of trigonometric moment problems and signal processing, Thomas Kailath describes the role of Szego polynomials in linear predictive coding methods, parallel implementation, one-dimensional inverse scattering problems, and the Toeplitz moment matrices.Christian Berg contrasts the multi-dimensional moment problem with the one-dimensional theory and shows how the theory of the moment problem may be viewed as part of harmonic analysis on semigroups.
Starting from a historical survey of the use of moments in probability and statistics, Persi Diaconis illustrates the continuing vitality of these methods in a variety of recent novel problems drawn from such areas as Wiener-Ito integrals, random graphs and matrices, Gibbs ensembles, cumulants and self-similar processes, projections of high-dimensional data, and empirical estimation.
Table of Contents
Classical background of the moment problem by H. J. Landau Geometry of the moment problem by J. H. Kemperman B. Moment problems and operators in Hilbert space by D. Sarason Signal processing applications of some moment problems by T. Kailath The multidimensional moment problem and semigroups by C. Berg Application of the method of moments in probability and statistics by P. Diaconis.
by "Nielsen BookData"