Signal processing : signals, filtering, and detection
著者
書誌事項
Signal processing : signals, filtering, and detection
(Van Nostrand Reinhold electrical/computer science and engineering series)
Van Nostrand Reinhold, c1987
大学図書館所蔵 全15件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 649-654
Includes index
内容説明・目次
内容説明
Signal processing arises in the design of such diverse systems as communications, sonar, radar, electrooptical, navigation, electronic warfare and medical imaging systems. It is also used in many physical sciences, such as geophysics, acoustics, and meteorology, among many others. The common theme is to extract and estimate the desired signals, which are mixed with a variety of noise sources and disturbances. Signal processing involves system analysis, random processes, statistical inferences, and software and hardware implementation. The purpose of this book is to provide an elementary, informal introduction, as well as a comprehensive account of principles of random signal processing, with emphasis on the computational aspects. This book covers linear system analysis, probability theory, random signals, spectral analysis, estimation, filtering, and detection theory. It can be used as a text for a course in signal processing by under- graduates and beginning graduate students in engineering and science and also by engineers and scientists engaged in signal analysis, filtering, and detection.
Part of the book has been used by the author while teaching at the State University of New York at Buffalo and California State University at Long Beach. An attempt has been made to make the book self-contained and straight- forward, with the hope that readers with varied backgrounds can appreciate and apply principles of signal processing. Chapter 1 provides a brief review of linear analysis of deterministic signals.
目次
1. Signals, Spectra, and Samples.- 1.0. Introduction.- 1.1. Signals.- 1.2. Fourier Series.- 1.3. Fourier, Laplace, and Hubert Transforms.- 1.4. Linear Systems and Filters.- 1.5. Sampling.- 1.6. Digital Signals and Discrete Transforms.- 1.7. Matrix and State Variable Methods.- 1.8. Bibliographical Notes.- Exercises.- Appendix 1.A. The Fast Fourier Transforms.- Appendix 1.B. Zeros and Poles.- Appendix 1.C. Proofs of Fourier, Laplace, and z Transforms.- Appendix 1.D. Digital Filter Fundamentals.- 2. Random Samples.- 2.0. Introduction.- 2.1. Probability Space.- 2.2. Probability Assignment.- 2.3. Random Variable.- 2.4. Moments and Characteristic Function.- 2.5. Functions of Random Variables.- 2.6. Multidimensional Random Variable.- 2.7. Conditional Probability: Distribution and Density.- 2.8. Distribution Associated with Gaussian Variables.- 2.9. Bibliographical Notes.- Exercises.- Appendix 2.A. Cauchy-Schwarz Inequality.- 3. Random Signals, Estimation, and Filtering.- 3.0. Introduction.- 3.1. Definition and Description.- 3.2. Correlation and Covariance Functions.- 3.3. Gaussian and Markov Processes.- 3.4. Stationary Random Signals.- 3.5. Spectral Analysis and Sampling.- 3.6. Narrow Band Noise Process.- 3.7. Estimation of Parameters.- 3.8. Estimation Methods.- 3.9. Recursive Estimation.- 3.10. Optimum Linear Filters.- 3.11. Bibliographical Notes.- Exercises.- Appendix 3.A. Spectral Estimation.- Appendix 3.B. Kaiman Filtering.- 4. Detection of Signals.- 4.0. Introduction.- 4.1. Hypothesis Testing.- 4.2. Signals with Known Parameters.- 4.3. Signals with Random Parameters.- 4.4. Signals in Colored Noise.- 4.5. Multiple Signals.- 4.6. Sequential Detection.- 4.7. Nonparametric Methods.- 4.8. Bibliographical Notes.- Exercises.- Appendix 4.A. Two Double-Integral Identities.- Appendix 4.B. Link Calculation for Satellite Communication and Rain Attenuation.
「Nielsen BookData」 より