Preferred orientation in deformed metals and rocks : an introduction to modern texture analysis
Author(s)
Bibliographic Information
Preferred orientation in deformed metals and rocks : an introduction to modern texture analysis
Academic Press, 1985
Available at 35 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 557-600
Includes index
Description and Table of Contents
Description
This volume provides an introduction to the texture analysis of deformed materials and explores methods of determining and interpreting the preferred orientation of crystals in deformed polycrystalline aggregates.**The book reviews: 1) the techniques, procedures, and theoretical basis for the accumulation and analysis of orientation data; 2)the processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation; 3) the textures in specific systems and application of principles to the solution of specific problems.**With a combination of metallurgic and geologic applications, Preferred Orientation in Deformed Metals and Rocks: An Introduction to Modern Texture Analysis will be an important source book for students and researchers in materials science, solid state physics, structural geology, and geophysics.**FROM THE PREFACE: Determination and interpretation of the preferred orientation of crystals in deformed polycrystalline aggregates (in this volume also referred to as texture) has been of longstanding concern to both materials scientists and geologists. A similar theoretical background--such as the dislocation theory of crystal plasticity--has been the basis of understanding flow in metals and rocks; and similar determinative techniques--including microscopy and x-ray diffraction--have been used to study textures and microstructures. Whereas many of the fundamental principles have been established early this century by scientists such as Jeffery, Sachs, Sander, Schmid, Schmidt, and Taylor, only in recent years has knowledge reached a level that provides a quantitative framework which has replaced a largely phenomenological approach. This is expressed in the sudden new emphasis on textural studies, as documented by the large number of recent publications.**This volume contains material to serve as an introduction for those who wish to enter this field as well as reviews for those who are already engaged in advanced research....**The book is divided into three parts. The first (Chapters 2*b17) deals with techniques, procedures, and theoretical bases for the accumulation and analysis of orientation data. The second (Chapters 8*b112) introduces processes by which polycrystals deform and the microstructural mechanisms responsible for the development of the preferred orientation. All those chapters emphasize basic principles and apply to metals as well as to minerals. The third part (Chapters 13*b126) illustrates textures in specific systems and the application of the principles set out in the earlier chapters to the solution of specific problems. Readers of these chapters will quickly become aware that metals have been more exhaustively studied than minerals; but they will also realize that, because of their structural symmetry, metals are in general much simpler than rocks and that the intepretation of metal textures is less involved. An extensive list of relevant references provides access to much of the original literature on textures....
Table of Contents
L.E. Weiss and H.-R. Wenk, An Introduction. H.-R. Wenk, Measurement of Pole Figures. L.E. Weiss and H.-R. Wenk, Symmetry of Pole Figures and Textures. H.J. Bunge, Representation of Preferred Orientations. H.J. Bunge and C. Esling, The Harmonic Method. H. Schaeben, A. Vadon, and H.-R. Wenk, Vector Method. S. Matthies and H.-R. Wenk, ODF Reproduction with Conditional Ghost Correction. D.J. Barber, Dislocations and Microstructures. G. Gottstein and H. Mecking, Recrystallization. T.G. Langdon, Regimes of Plastic Deformation. P. Van Houtte and F. Wagner, Development of Textures by Slip and Twinning. G. Oertel, Reorientation due to Grain Shape. H. Mecking, Textures of Metals. J. Hirsch and K. L cke, Interpretation of the Copper*b1Brass Texture Transition by Quantitative ODF Analysis. H. Kern and A. Richter, Microstructures and Textures in Evaporites. H. Siemes and Ch. Hennig-Michaeli, Ore Minerals. H.-R. Wenk, Carbonates. G.P. Price, Preferred Orientations in Quartzites. J.-C.C. Mercier, Olivine and Pyroxenes. G. Oertel, Phyllosilicate Textures in Slates. J.L. Rosenfeld, Schistosity. B.E. Hobbs, The Geological Significance of Microfabric Analysis. H.C. Heard, Experimental Determination of Mechanical Properties. H.J. Bunge, Physical Properties of Polycrystals. P.R. Morris and J.W. Flowers, Texture and Magnetic Properties of Metals. H. Kern and H.-R. Wenk, Anisotropy in Rocks and the Geological Significance. References. Index.
by "Nielsen BookData"