Itô calculus
著者
書誌事項
Itô calculus
(Wiley series in probability and mathematical statistics, . Probability and mathematical statistics . Diffusions,
Wiley, c1987
大学図書館所蔵 全74件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 449-468
Includes index
内容説明・目次
内容説明
The main themes of this book are stochastic integrals, stochastic differential equations, excursion theory and 'the general theory of processes'. Much effort has gone into the attempt to make these subjects accessible by providing many concrete examples illustrating techniques of calculation, and by treating all topics (including stochastic differential geometry) from the ground up, starting from the simplest case. In particular, the theory is developed first for the 'continuous' case, by far the most important in practice, while the general theory (and its applications) forms the last chapter. Many of the examples and many of the proofs are new and some important methods of calculation appear for the first time in a book. Stochastic differential equations are widely used in practice: in electrical engineering; in controlling systems subject to random 'noise'; in modelling economic systems; and in several branches of physics and chemistry. They are also used to great effect in other branches of mathematics, such as the theory of partial differential equations, differential geometry and complex analysis.
Researchers and practitioners in all these fields will find it a useful and highly readable reference work.
目次
- INTRODUCTION TO ITO CALCULUS: Some Motivating Remarks
- Some Fundamental Ideas: Previsible Processes, Localizabtion, etc
- The Elementary Theory of Finite-Variation Processes
- Stochastic Integrals: The L2 Theory
- Stochastic Integrals with Respect to Continuous Semimartingales
- Applications of Ito 's Formula
- STOCHASTIC DIFFERENTIAL EQUATIONS AND DIFFUSIONS: Introduction
- Pathwise Uniqueness, Strong SDEs, Flows
- Weak Solutions, Uniqueness in Law
- Martingale Problems, Markov Property
- Overture to Stochastic Differential Geometry
- One-Dimensional SDEs
- One-Dimensional Diffusions
- THE GENERAL THEORY: Orientation
- The Debut and Section Theorems
- Optional Projections and Filtering
- Characterizing Previsible Times
- Dual Previsible Projections
- The Meyer Decomposition Theorem
- Stochastic Integration: The General Case
- Excursion Theory.
「Nielsen BookData」 より