The beginnings of Greek mathematics
著者
書誌事項
The beginnings of Greek mathematics
(Synthese historical library, v. 17)
D. Reidel Pub. Co., c1978
- タイトル別名
-
Anfänge der griechischen Mathematik
大学図書館所蔵 全51件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Translation of Anfänge griechischen Mathematik
Includes bibliographical references and indexes
内容説明・目次
内容説明
When this book was first published, more than five years ago, I added an appendix on How the Pythagoreans discovered Proposition 11.5 of the 'Elements'. I hoped that this appendix, although different in some ways from the rest of the book, would serve to illustrate the kind of research which needs to be undertaken, if we are to acquire a new understanding of the historical development of Greek mathematics. It should perhaps be mentioned that this book is not intended to be an introduction to Greek mathematics for the general reader; its aim is to bring the problems associated with the early history of deductive science to the attention of classical scholars, and historians and philos ophers of science. I should like to conclude by thanking my translator, Mr. A. M. Ungar, who worked hard to produce something more than a mechanical translation. Much of his work was carried out during the year which I spent at Stanford as a fellow of the Center for Advanced Study in the Behavioral Sciences. This enabled me to supervise the work of transla tion as it progressed. I am happy to express my gratitude to the Center for providing me with this opportunity. Arpad Szabo NOTE ON REFERENCES The following books are frequently referred to in the notes. Unless otherwise stated, the editions are those given below. Burkert, W. Weisheit und Wissensclzaft, Studien zu Pythagoras, Philo laos und Platon, Nuremberg 1962.
目次
1. The early history of the theory of irrationals.- Part, 2. The pre-Euclidean theory of proportions.- 3. The construction of mathematics within a deductive framework.- Postscript.- 1 The prevailing view.- 2 My own view.- 3 Elements of a Pythagorean theory about the areas of parallelograms.- 4 How to find a square with the same area as a given rectangle.- 5 Conclusion.- Index of names.
「Nielsen BookData」 より