The meaning of quantum gravity
著者
書誌事項
The meaning of quantum gravity
(Fundamental theories of physics, v. 20)
D. Reidel, c1988
大学図書館所蔵 全23件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 124-128
Includes index
内容説明・目次
内容説明
In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein's gravitational equations connect gravity and non-gravitational matter and because, second, it can be taken for granted that non-gravitational matter has an atomic or quantum structure such that its energy-momentum tensor standing on the right-hand side of Einstein's equations is formed out of quantum operators. These two facts make it impossible to read the left-hand side of Einstein's equations as an ordinary classical function. This does not necessarily mean, however, that we must draw the conclusion that General Relativity Theory, similar to electrodynamics, could or should be quantized in a rigorous manner and that this quantization has similar consequences to quantum electrodynamics. In other words, when for reasons of consistency quantization is tried, then one has to ask whether and where the quantization procedure has a physical meaning, i.e., whether there exist measurable effects of quantum gravity. IQ accordance with these questions, we are mainly dealing with the discus sion of the principles of quantized General Relativity Theory and with the estimation of quantum effects including the question of their measurability. This analysis proves that it is impossible to distinguish between classical and quantum General Relativity Theory for the extreme case of Planck's orders of magnitude. In other words, there does not exist a physically meaningful rigorous quantization conception for Einstein's theory.
目次
1/Quantum Theory and Gravitation.- 2/Quantum Mechanics and Classical Gravitation.- 2.1. Diffraction of Particles by a Grating.- 2.2. Diffraction of Particles by a Gravitational Grating.- 2.3. Gravitational Atomic Model.- 2.4. Equivalence Principle and Heisenberg's Fourth Relation.- 2.5. Quantum Mechanics and the Weak Principle of Equivalence.- 3/Measurement in Quantum Gravity.- 3.1. The Bohr-Rosenfeld Principles of Measurement in Quantum Field Theory.- (a) The Landau-Peierls Arguments.- (b) The Bohr-Rosenfeld Arguments.- 3.2. Measurement in Quantum Gravity.- 3.3. Ehrenfest's Theorems.- 4/Mathematical Descriptions of Quantum Gravity.- 4.1. Heisenberg-Euler-Kockel Approximation.- 4.2. On Gauge Fixing in Quantum Gravity.- 5/Quantum Postulates and the Strong Principle of Equivalence.- 5.1. Gravitons and the Linear Approximation of General Relativity Theory.- 5.2. Gravitons and the Nonlinear High-Frequency Approximation of General Relativity Theory.- 5.3. Compton Effect.- 5.4. Lamb Shift.- 5.5. Black-body Radiation.- 5.6. A Historical Remark: Black-body Radiation and Compton Effect.- 6/Planckions.- 6.1. Heavy Gravitons.- 6.2. Planckions as Biggest Elementary Particles and as Smallest Test Bodies.- 6.3. Foam and Block Spaces.- Appendix A/Massive Shell Models and Shock Waves in Gravitational Theories with Higher Derivatives.- Appendix B/On the Physical Meaning of Planck's 'Natural Units'.- References.
「Nielsen BookData」 より