The evolution of dynamics : vibration theory from 1687 to 1742
著者
書誌事項
The evolution of dynamics : vibration theory from 1687 to 1742
(Studies in the history of mathematics and physical sciences, 6)
Springer-Verlag, c1981
- : New York
- : Berlin
大学図書館所蔵 全45件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 177-181
Includes index
内容説明・目次
内容説明
In this study we are concerned with Vibration Theory and the Problem of Dynamics during the half century that followed the publication of Newton's Principia. The relationship that existed between these subject!! is obscured in retrospection for it is now almost impossible not to view (linear) Vibration Theory as linearized Dynamics. But during the half century in question a theory of Dynamics did not exist; while Vibration Theory comprised a good deal of acoustical information, posed definite problems and obtained specific results. In fact, it was through problems posed by Vibration Theory that a general theory of Dynamics was motivated and discovered. Believing that the emergence of Dynamics is a critically important link in the history of mathematical science, we present this study with the primary goal of providing a guide to the relevant works in the aforemen- tioned period. We try above all to make the contents of the works readily accessible and we try to make clear the historical connections among many of the pertinent ideas, especially those pertaining to Dynamics in many degrees of freedom.
But along the way we discuss other ideas on emerging subjects such as Calculus, Linear Analysis, Differential Equations, Special Functions, and Elasticity Theory, with which Vibration Theory is deeply interwound. Many of these ideas are elementary but they appear in a surprising context: For example the eigenvalue problem does not arise in the context of special solutions to linear problems-it appears as a condition for isochronous vibrations.
目次
- 1. Introduction.- 2. Newton (1687).- 2.1. Pressure Wave.- 2.2. Remarks.- 3. Taylor (1713).- 3.1. Vibrating String.- 3.2. Absolute Frequency.- 3.3. Remarks.- 4. Sauveur (1713).- 4.1. Vibrating String.- 4.2. Remarks.- 5. Hermann (1716).- 5.1. Pressure Wave.- 5.2. Vibrating String.- 5.3. Remarks.- 6. Cramer (1722).- 6.1. Sound.- 6.2. Remarks.- 7. Euler (1727).- 7.1. Vibrating Ring.- 7.2. Sound.- 8. Johann Bernoulli (1728).- 8.1. Vibrating String (Continuous and Discrete).- 8.2. Remark on the Energy Method.- 9. Daniel Bernoulli (1733
- 1734)
- Euler (1736) ...- 9.1. Linked Pendulum and Hanging Chain.- 9.2. Laguerre Polynomials and J0.- 9.3. Double and Triple Pendula.- 9.4. Roots of Polynomials.- 9.5. Zeros of J0.- 9.6. Other Boundary Conditions.- 9.7. The Bessel Functions Jv.- 10. Euler (1735).- 10.1. Pendulum Condition.- 10.2. Vibrating Rod.- 10.3. Remarks.- 11. Johann II Bernoulli (1736).- 11.1. Pressure Wave.- 11.2. Remarks.- 12. Daniel Bernoulli (1739
- 1740).- 12.1. Floating Body.- 12.2. Remarks.- 12.3. Dangling Rod.- 12.4. Remarks on Superposition.- 13. Daniel Bernoulli (1742).- 13.1. Vibrating Rod.- 13.2. Absolute Frequency and Experiments.- 13.3. Superposition.- 14. Euler (1742).- 14.1. Linked Compound Pendulum.- 14.2. Dangling Rod and Weighted Chain.- 15. Johann Bernoulli (1742) no.- 15.1. One Degree of Freedom.- 15.2. Dangling Rod.- 15.3. Linked Pendulum I.- 15.4. Linked Pendulum II.- Appendix: Daniel Bernoulli's Papers on the Hanging Chain and the Linked Pendulum.- Theoremata de Oscillationibus Corporum.- De Oscillationibus Filo Flexili Connexorum.- Theorems on the Oscillations of Bodies.- On the Oscillations of Bodies Connected by a Flexible Thread.
「Nielsen BookData」 より