Linear operator theory in engineering and science
著者
書誌事項
Linear operator theory in engineering and science
(Applied mathematical sciences, v. 40)
Springer-Verlag, c1982
- : pbk
大学図書館所蔵 全74件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 609-614
Includes indexes
内容説明・目次
- 巻冊次
-
ISBN 9780387907482
内容説明
This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.
- 巻冊次
-
: pbk ISBN 9780387950013
内容説明
A unique introduction to the theory of linear operators on Hilbert space. The author presents the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented.
目次
1 Introduction.- 1. Black Boxes.- 2. Structure of the Plane.- 3. Mathematical Modeling.- 4. The Axiomatic Method. The Process of Abstraction.- 5. Proofs of Theorems.- 2 Set-Theoretic Structure.- 1. Introduction.- 2. Basic Set Operations.- 3. Cartesian Products.- 4. Sets of Numbers.- 5. Equivalence Relations and Partitions.- 6. Functions.- 7. Inverses.- 8. Systems Types.- 3 Topological Structure.- 1. Introduction.- A Introduction to Metric Spaces.- 2. Metric Spaces: Definition.- 3. Examples of Metric Spaces.- 4. Subspaces and Product Spaces.- 5. Continuous Functions.- 6. Convergent Sequences.- 7. A Connection Between Continuity and Convergence.- B Some Deeper Metric Space Concepts.- 8. Local Neighborhoods.- 9. Open Sets.- 10. More on Open Sets.- 11. Examples of Homeomorphic Metric Spaces.- 12. Closed Sets and the Closure Operation.- 13. Completeness.- 14. Completion of Metric Spaces.- 15. Contraction Mapping.- 16. Total Boundedness and Approximations.- 17. Compactness.- 4 Algebraic Structure.- 1. Introduction.- A Introduction to Linear Spaces.- 2. Linear Spaces and Linear Subspaces.- 3. Linear Transformations.- 4. Inverse Transformations.- 5. Isomorphisms.- 6. Linear Independence and Dependence.- 7. Hamel Bases and Dimension.- 8. The Use of Matrices to Represent Linear Transformations.- 9. Equivalent Linear Transformations.- B Further Topics.- 10. Direct Sums and Sums.- 11. Projections.- 12. Linear Functionals and the Algebraic Conjugate of a Linear Space.- 13. Transpose of a Linear Transformation.- 5 Combined Topological and Algebraic Structure.- 1. Introduction.- A Banach Spaces.- 2. Definitions.- 3. Examples of Normal Linear Spaces.- 4. Sequences and Series.- 5. Linear Subspaces.- 6. Continuous Linear Transformations.- 7. Inverses and Continuous Inverses.- 8. Operator Topologies.- 9. Equivalence of Normed Linear Spaces.- 10. Finite-Dimensional Spaces.- 11. Normed Conjugate Space and Conjugate Operator.- B Hilbert Spaces.- 12. Inner Product and Hilbert Spaces.- 13. Examples.- 14. Orthogonality.- 15. Orthogonal Complements and the Projection Theorem.- 16. Orthogonal Projections.- 17. Orthogonal Sets and Bases: Generalized Fourier Series.- 18. Examples of Orthonormal Bases.- 19. Unitary Operators and Equivalent Inner Product Spaces.- 20. Sums and Direct Sums of Hilbert Spaces.- 21. Continuous Linear Functionals.- C Special Operators.- 22. The Adjoint Operator.- 23. Normal and Self-Adjoint Operators.- 24. Compact Operators.- 25. Foundations of Quantum Mechanics.- 6 Analysis of Linear Operators (Compact Case).- 1. Introduction.- A An Illustrative Example.- 2. Geometric Analysis of Operators.- 3. Geometric Analysis. The Eigenvalue-Eigenvector Problem.- >4. A Finite-Dimensional Problem.- B The Spectrum.- 5. The Spectrum of Linear Transformations.- 6. Examples of Spectra.- 7. Properties of the Spectrum.- C Spectral Analysis.- 8. Resolutions of the Identity.- 9. Weighted Sums of Projections.- 10. Spectral Properties of Compact, Normal, and Self-Adjoint Operators.- 11. The Spectral Theorem.- 12. Functions of Operators (Operational Calculus).- 13. Applications of the Spectral Theorem.- 14. Nonnormal Operators.- 7 Analysis of Unbounded Operators.- 1. Introduction.- 2. Green's Functions.- 3. Symmetric Operators.- 4. Examples of Symmetric Operators.- 5. Sturm-Liouville Operators.- 6. Garding's Inequality.- 7. Elliptic Partial Differential Operators.- 8. The Dirichlet Problem.- 9. The Heat Equation and Wave Equation.- 10. Self-Adjoint Operators.- 11. The Cayley Transform.- 12. Quantum Mechanics, Revisited.- 13. Heisenberg Uncertainty Principle.- 14. The Harmonic Oscillator.- Appendix A The Hoelder, Schwartz, and Minkowski Inequalities.- Appendix B Cardinality.- Appendix C Zorn's Lemma.- Appendix D Integration and Measure Theory.- 1. Introduction.- 2. The Riemann Integral.- 3. A Problem with the Riemann Integral.- 5. Null Sets.- 6. Convergence Almost Everywhere.- 7. The Lebesgue Integral.- 8. Limit Theorems.- 9. Miscellany.- 10. Other Definitions of the Integral.- 13. Differentiation.- 14. The Radon-Nikodym Theorem.- 15. Fubini Theorem.- Appendix E Probability Spaces and Stochastic Processes.- 1. Probability Spaces.- 2. Random Variables and Probability Distributions.- 3. Expectation.- 4. Stochastic Independence.- 5. Conditional Expectation Operator.- 6. Stochastic Processes.- Index of Symbols.
「Nielsen BookData」 より