Graph theory and topology in chemistry : a collection of papers presented at an international conference held at the University of Georgia, Athens, Georgia, U.S.A., 16-20 March 1987
著者
書誌事項
Graph theory and topology in chemistry : a collection of papers presented at an international conference held at the University of Georgia, Athens, Georgia, U.S.A., 16-20 March 1987
(Studies in physical and theoretical chemistry, v. 51)
Elsevier, 1987
大学図書館所蔵 全15件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Participants from ten different countries attended the conference which was in many ways a sequel to a symposium held at the University of Georgia in April 1983. The principal goal of this Conference was to provide a forum for chemists and mathematicians to interact and become better informed on current activities and new developments in the broad areas of chemical topology and chemical graph theory. It is intended that this proceedings volume will make available to a wider audience a permanent record of the papers presented at the Conference. The 41 papers span a wide range of topics, and have been grouped into five major sections
目次
Section A: Knot Theory and Reaction Topology. Knots, macromolecules and chemical dynamics (D.W. Summers). Topological stereochemistry: knot theory of molecular graphs (D.M. Walba). A topological approach to the stereochemistry of nonrigid molecules (J. Simon). Chirality of non-standardly embedded mobius ladders (E. Flapan). Extrinsic topological chirality indices of molecular graphs (D.P. Jonish, K.C. Millett). New developments in reaction topology (P.G. Mezey). An outline for a covariant theory of conservative kinetic forces (L. Peusner). Topological contributions to the chemistry of living systems (D.C. Mikulecky). Section B: Molecular Complexity, System Similarity, and Topological Indices. On the topological complexity of chemical systems (D. Bonchev, O.E. Polansky). Numerical modelling of chemical structures: local graph invariants and topological indices (A.T. Balaban). The fractal nature of alkane physicochemical behavior (D.H. Rouvray). The correlation between physical properties and topological indices of N-alkanes (N. Adler, L. Kovacic-Beck). The use of topological indices to estimate the melting points of organic molecules (M.P. Hanson, D.H. Rouvray). Some relationships between the Wiener number and the number of self-returning walks in chemical graphs (D. Bonchev et al.). Unique mathematical features of the substructure metric approach to quantitative molecular similarity analysis (M. Johnson et al.). A subgraph isomorphism theorem for molecular graphs (V. Nicholson et al.). A topological approach to molecular-similarity analysis and its application (C.-C. Tsai et al.). Section C: Polyhedra, Clusters and the Solid State. Permutational description of the dynamics of octacoordinate polyhedra (J. Brocas). Symmetry properties of chemical graphs X. Rearrangement of axially distorted octahedra (M. Randic et al.). Graphs for chemical reaction networks: applications to the isomerizations among the carboranes (B.M. Gimarc, J.J. Ott). Topology and the structures of molecules and solids (J.K. Burdett). Topological aspects of infinite metal clusters and superconductors (R.B. King). Thermodynamics of phase transitions in metal cluster systems (M.H. Lee). Random graph models for physical systems (K.T. Balinska, L.V. Quintas). From Gaussian subcritical to Holtsmark (3/2 - Levy Stable) supercritical asymptotic behavior in ``Rings Forbidden'' flory-stockmayer model of polymerization (B. Pittel et al.). Section D: Eigenvalues, Conjugated Systems, and Resonance. Ground-state multiplicities of organic di- and multi-radicals (M. Shen, O. Sinanoglu). Organic polyradicals, high-spin hydrocarbons, and organic ferromagnets (D.J. Klein, S.A. Alexander). Ground state properties of conjugated systems in a simple bond orbital resonance theory (BORT) (T.P. Zivkovic). The conjugated circuits model: On the selection of the parameters for computing the resonance energies (M. Randic et al.).
「Nielsen BookData」 より