Bibliographic Information

Photovoltaic and photoelectrochemical solar energy conversion

edited by F. Cardon, W.P. Gomes, and W. Dekeyser

(NATO advanced study institutes series, ser. B . Physics ; v. 69)

Plenum Press, c1981

Available at  / 26 libraries

Search this Book/Journal

Note

"Proceedings of a NATO Advanced Study Institute on Photovoltaic and Photoelectrochemical Solar Energy Conversion held August 25-September 5, 1980, at Gent, Belgium."--T.p. verso

"Published in cooperation with NATO Scientific Affairs Division."

Includes bibliographical references and indexes

Description and Table of Contents

Table of Contents

Recombination in Solar Cells: Theoretical Aspects.- 1. Introduction.- 2. Conventions Usually Made for p-n Junctions and Solar Cells.- 3. Three Laws of Photovoltaics.- 4. Maximum Power, Recombination and the Ideality Factor.- 5. Junction Currents as Recombination Currents.- 6. Steady-State Recombination Rates at a Given Plane X.- 7. Junction Model and Space-Dependences.- 8. Transition Region Recombination Current Density.- 9. The Bulk-Regions Recombination Current Density.- 10. Summery of p-n Junction Current Densities from Sections 8 and 9.- 11. Configuration and Electrostatics of the Schottky Barrier Solar Cell.- 12. The Place of Recombination Effects in (p-type) Schottky Barrier Solar Cells.- 13. Recombination Currents and Voltage Drops in (p-type) Schottky Barrier Solar Cells.- 14. Conclusion.- A Few More General Topics.- (I) Thermodynamic Efficiency.- (II) Simple Theory to See that an Optimum Energy Gap Exists.- (III) Is Dollars per Peak Watt a Good Unit?.- (IV) Energy Unit for Global Use.- (V) When will Solar Conversion be Economically Viable?.- References.- Schottky Barrier Solar Cells.- 1. Introduction.- 2. The Schottky Barrier Cell Principle.- 2.1. Principle of SBSC Operation.- 2.2. Current Transport Mechanism in Schottky Barriers.- 2.3. Effect of the MIS Potential Distribution upon the Diode Quality Factor n.- 2.4. The MIS SBSC under Illumination.- 2.5. The Minority Carrier MIS SB Cell.- 3. Solar Cell Parameters and Design Considerations.- 3.1. Metal-Semiconductor Barrier Height.- 3.2. Diode Quality Factor n.- 3.3. Interfacial Oxide Thickness.- 3.4. Transmission Properties of the Metal.- 3.5. Spectral Response.- 3.6. Substrate Resistivity.- 3.7. Substrate Thickness.- 3.8. Series Resistance.- 4. Results and Discussion of Typical Silicon MIS Cells.- 4.1. Open Circuit Voltage.- 4.2. Short Circuit Current Density.- 4.3. Fill Factor.- 4.4. Efficiency.- 4.5. The Min MIS Cell.- 4.6. The MIS Inversion Layer Cell.- 4.7. Stability of MIS Solar Cells.- 4.8. The Future for MIS Cells - Cheaper Substrates?.- Acknowledgement.- References.- CdS-Cux S Thin Film Solar Cells.- 1. Introduction.- 2. CdS Thin Film Technology.- 2.1. Vacuum Vapor Deposition of CdS Films.- 2.2. Sputtering.- 2.3. Spray Deposition.- 2.4. Sintering.- 3. CuxS Thin Film Technology.- 3.1. Dipping Process (Wet Process).- 3.2. Evaporation of CuCl.- 3.3. Evaporation of CuxS.- 3.4. Sputtering of CuxS.- 4. Properties of the CdS Layer.- 4.1. Crystallography and Grain Size of CdS Films.- 4.2. Optical Properties of the CdS Films.- 4.3. Luminescence.- 4.4. Electrical Properties of CdS Films.- 5. Properties of CuxS Films.- 5.1. Stoichiometry.- 5.2. Coulometric Titration.- 5.3. Optical Properties.- 5.4. Electrical Properties.- 6. Properties of the Heterojunction.- 6.1. Structure of the Heterojunction.- 6.2. Surface Effects of the CuxS Film.- 6.3. Capacitance Measurements.- 6.4. Diffusion Length in CuxS and CdS.- 6.5. Spectral Response.- 6.6. Band Diagram.- 7. Technology of CdS-CuxS Photovoltaic Generators.- 7.1. Cell Structures.- 7.2. Fabrication Process of CdS-CuxS Cells.- 8. Performance Characteristics of Solar Cells and Generators.- References.- Conversion of Solar Energy Using Tandem Photovoltaic Cells Made from Multi-Element Semiconductors.- I. Introduction.- II. Increasing Efficiency by Recourse to Tandem PV Cell Systems.- III. Design of an Optimized Solar Cell Structure for Tandem Cell Systems.- IV. Selection of Semiconductors for Tandem Solar Cell Systems.- V. Optimized Design of Direct Gap Photovoltaic Cells.- VI. Monolothic and Split Spectrum Tandem Cell Systems.- VII. Synthesis and Properties of Ternary Alloy Chalcopyrite Semiconductors.- VIII. Thin Films of CuInSe2 and Solar Cells Made from Them.- IX. Summary and Conclusions.- References.- The Principles of Photoelectrochemical Energy Conversion.- I. Sunlight Conversion into Chemical Energy.- Photoredox Reactions.- Redox Energies and the Scales of Redox Potentials.- Photosynthesis as an Example.- Artificial Systems for Energy Conversion.- References to Lecture for Further Reading.- II. Fundamentals of Semiconductor Electrochemistry.- The Space Charge Layer.- Kinetics of Electron Transfer Reactions.- References.- III. The Semiconductor Electrolyte Contact under Illumination and Photodecomposition Reactions.- Distribution of Electrons and Holes under Illumination.- Photodecomposition of Semiconductors.- References.- IV. Photoelectrochemical Cells and their Problems.- Regenerative Cells.- Storage Cells.- Energy Conversion Efficiency.- References.- Photoelectrochemical Devices for Solar Energy Conversion.- General Discussion of Photoelectrochemical Devices.- Semiconductor Electrolyte Junctions - Conventional Picture.- Photo-Induced Charge Transfer Reactions.- Semiconductor Electrode Stability.- Electrochemical Photovoltaic Cells.- Photoelectrosynthetic Cells.- Photoelectrolysis Cells.- Photocatalytic Cells.- General Considerations.- Effects and Importance of Surface States.- Unpinned Band Edges.- Hot Carriers.- Surface Modification.- Electrochemical Photovoltaic Cells.- Reduced Surface and Grain Boundary Recombination.- Non-aqueous Electrolytes.- Storage Systems.- General Status and Prognosis for Electrochemical Photovoltaic Cells.- Photoelectrosynthetic Cells.- Derivatized Electrodes.- Photo-Oxidation and Photo-Reduction on the same Surface and in Particulate System.- Dye Sensitization.- Layered Compounds and other New Materials.- General Status and Prognosis for Photoelectrosynthesis.- Acknowledgement.- References.- The Iron Thionine Photogalvanic Cell.- The Reaction Scheme.- The Differential Equation.- The Characteristic Lengths.- The Kinetic Length.- Bleaching and the Generation Length.- The Recipe for Success.- The Electrode Kinetics.- Current Voltage Characteristics.- Homogeneous Kinetics.- The Iron Thionine System.- The Reaction Scheme.- Quantum Efficiencies.- The Parameters.- Rotating Transparent Disc Electrodes.- The Thionine System.- The Synthesis of Modified Thiazine Dyes.- The Properties of the Modified Dyes.- Self Quenching.- Summary of Progress to Date.- Electrode Selectivity.- The Problem.- The Manufacture of the Thionine Coated Electrode.- Properties of the Thionine Coated Electrode.- Electrode Kinetics.- Application to Photogalvanic Systems.- The Efficiencies of Photogalvanic Cells.- The Concentration of Fe(II).- The Concentration of Ee(III).- The Variation of Power with ?E? and k-2.- Variation with pH.- Final Summary.- Acknowledgements.- References.- Charge Separation and Redox Catalysis in Solar Energy Conversion Processes.- 1. Introduction.- 2. Design of Photoredox Reactions for Photodissociation of Water.- 2.1. Photodecomposition of Water in Homogeneous Solutions.- 2.2. Photoproduction of H2 from Water.- 2.2.1. Photolysis of Simple Ions in Acid Media.- 2.2.2. Photolysis of Metal Hydrides.- 2.2.3. H2 Production via Dye-Sensitized Redox Reactions.- 2.2.4. Photochemistry of Selected Redox Systems for H2 Evolution.- 2.3. Redox Systems for O2-Evolution from Water.- 2.3.1. Photo-Induced Oxygen Evolution from Water.- 3. Stabilization of Redox Intermediates through the Use of Multiphase Systems.- 3.1. Micelles.- 3.1.1. Photoionisation.- 3.1.2. Light Induced Electron Transfer in the Micelle.- 3.1.3. Solution and Spatial Separation of Reactants in Micelles.- 3.1.4. Functional Micellar Systems.- a) Redox Reactions in Transition Metal Ion Micelles.- b) Micelles Formed with Crown Ether Surfactants.- c) Micelles with Long Chain Derivatives of Sensitizer or Acceptor Relays.- 3.2. Light-Induced Charge Separation in Vesicles.- 3.3. Charge Separation Phenimena in Other Multiphase Systems.- 4. Redox Catalysis.- 4.1. Concept of Redox Catalysis.- 4.2. Redox Catalysis in the H2 -Evolution Reaction from Water.- 4.3. Redox Catalysis in the O2Evolution Reaction from Water.- 4.4. Coupled Redox Catalysts for Water Decomposition.- 5. Photoelectrochemical Cells Based on Redox Reactions.- References.- Author Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top