Objectives and multi-objective decision making under uncertainty
Author(s)
Bibliographic Information
Objectives and multi-objective decision making under uncertainty
(Lecture notes in economics and mathematical systems, 112)(Mathematical economics)
Springer-Verlag, 1975
- : gw
- : us
Available at 61 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. 106-111
Description and Table of Contents
Table of Contents
1. The Concept of Objectives.- 1.1. The Decision Situation under Consideration.- 1.2. The Concept of Objectives under Certainty.- 1.2.1. "Aspects" and "Points of View".- 1.2.2. The Category of Ordered Topological Spaces. The Ordinal and the Cardinal Category.- 1.2.3. The Definition of an Objective Under Certainty.- 1.2.4. An Illustration of the Introduced Concepts.- 1.2.5. Side Conditions under Certainty.- 1.3. The Concept of Objectives under Uncertainty.- 1.3.1. Excursus: Axiomatical Treatment of the Bernoulli-Principle. Some Results on Continuity and Integrability of Utility Functions.- 1.3.1.1. The Natural ?-Algebra and the Interval Topology.- 1.3.1.1.1. Measurable Structures.- 1.3.1.1.2. Topological Structures.- 1.3.1.1.3. Connections between the Measurable and the Topological Structures of Preference Ordered Sets.- 1.3.1.2. The Expected-Utility-Theorem.- 1.3.1.3. A Special Case: The Utility Function as an Algebraic Homomorphism.- 1.3.2. Substantiation of the Information Requirements of the Objective-Concept4l.- 1.3.3. An Example46 1.4. Partial Objectives and Managerial Decisions.- 2. Formal Statement of the Problem.- 2.1. Complete Systems of Objectives.- 2.2. Criteria Vectors.- 2.3. The Treatment of the Problem on Principle.- 2.4. Excursus: The Vector Maximum Problem.- 2.4.1. The Concept of a Solution.- 2.4.2. The Treatment of the Vector Maximum Problem in the Literature.- 2.4.3. The 2-dimensional Vector Maximum Problem.- 2.4.3.1. Abstract Treatment of the Problem.- 2.4.3.2. The Algorithm for the Case of Two Dimensions.- 2.4.4. Linear Preference Structures and the Determination of Weights.- 2.4.5. Hyperbolic Preferences and. the Determination of the Exponential Weights.- 2.4.6. Generalization.- 2.4.7. Sketch of an Algorithm to the n-dimensional Vector Maximum Problem.- 3. Solution Approaches to the Problem of Multi-Objective Decision Making under Uncertainty.- 3.1. The Linear Model.- 3.2. The Quadratic Model.- 3.3. The Hyperbolic Model.- 3.3.1. An Axiomatical Treatment of Hyperbolic Preferences.- 3.3.2. On the Uniqueness of the Utility Function.- 3.4. A Collection of Models.- 4. Application.- References.
by "Nielsen BookData"