Theory of group representations
著者
書誌事項
Theory of group representations
(Die Grundlehren der mathematischen Wissenschaften, 246)
Springer-Verlag, c1982
- : us
- : gw
- : pbk
- タイトル別名
-
Teorii︠a︡ predstavleniĭ grupp
大学図書館所蔵 全102件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Originally published as Teorii︠a︡ predstavleniĭ grupp: Moscow : Nauka, 1975
Bibliography: p. [560]-563
Includes index
内容説明・目次
- 巻冊次
-
: us ISBN 9780387906027
内容説明
Author's Preface to the Russian Edition This book is written for advanced students, for predoctoral graduate stu- dents, and for professional scientists-mathematicians, physicists, and chemists-who desire to study the foundations of the theory of finite- dimensional representations of groups. We suppose that the reader is familiar with linear algebra, with elementary mathematical analysis, and with the theory of analytic functions. All else that is needed for reading this book is set down in the book where it is needed or is provided for by references to standard texts. The first two chapters are devoted to the algebraic aspects of the theory of representations and to representations of finite groups. Later chapters take up the principal facts about representations of topological groups, as well as the theory of Lie groups and Lie algebras and their representations. We have arranged our material to help the reader to master first the easier parts of the theory and later the more difficult. In the author's opinion, however, it is algebra that lies at the heart of the whole theory.
To keep the size of the book within reasonable bounds, we have limited ourselves to finite-dimensional representations. The author intends to devote another volume to a more general theory, which includes infinite- dimensional representations.
目次
- I Algebraic Foundations of Representation Theory.- 1. Fundamental Concepts of Group Theory.- 2. Fundamental Concepts and the Simplest Propositions of Representation Theory.- II Representations of Finite Groups.- 1. Basic Propositions of the Theory of Representations of Finite Groups.- 2. The Group Algebra of a Finite Group.- 3. Representations of the Symmetric Group.- 4. Induced Representations.- 5. Representations of the Group SL (2, Fq).- III Basic Concepts of the Theory of Representations of Topological Groups.- 1. Topological Spaces.- 2. Topological Groups.- 3. Definition of a Finite-Dimensional Representation of a Topological Group
- Examples.- 4. General Definition of a Representation of a Topological Group.- IV Representations of Compact Groups.- 1. Compact Topological Groups.- 2. Representations of Compact Groups.- 3. The Group Algebra of a Compact Group.- V Finite-Dimensional Representations of Connected Solvable Groups
- the Theorem of Lie.- 1. Connected Topological Groups.- 2. Solvable and Nilpotent Groups.- 3. Lie's Theorem.- VI Finite-Dimensional Representations of the Full Linear Group.- 1. Some Subgroups of the Group G.- 2. Description of the Irreducible Finite-Dimensional Representations of the Group GL (n, C).- 3. Decomposition of a Finite-Dimensional Representation of the Group GL(n, C) into Irreducible Representations.- VII Finite-Dimensional Representations of the Complex Classical Groups.- 1. The Complex Classical Groups.- 2. Finite-Dimensional Continuous Representations of the Complex Classical Groups.- VIII Covering Spaces and Simply Connected Groups.- 1. Covering Spaces.- 2. Simply Connected Spaces and the Principle of Monodromy.- 3. Covering Groups.- 4. Simple Connectedness of Certain Groups.- IX Basic Concepts of Lie Groups and Lie Algebras.- 1. Analytic Manifolds.- 2. Lie Algebras.- 3. Lie Groups.- X Lie Algebras.- 1. Some Definitions.- 2. Representations of Nilpotent and Solvable Lie Algebras.- 3. Radicals of a Lie Algebra.- 4. The Theory of Replicas.- 5. The Killing Form
- Criteria for Solvability and Semisimplicity of a Lie Algebra.- 6. The Universal Enveloping Algebra of a Lie Algebra.- 7. Semisimple Lie Algebras.- 8. Cartan Subalgebras.- 9. The Structure of Semisimple Lie Algebras.- 10. Classification of Simple Lie Algebras.- 11. The Weyl Group of a Semisimple Lie Algebra.- 12. Linear Representations of Semisimple Complex Lie Algebras.- 13. Characters of Finite-Dimensional Irreducible Representations of a Semisimple Lie Algebra.- 14. Real Forms of Semisimple Complex Lie Algebras.- 15. General Theorems on Lie Algebras.- XI Lie Groups.- 1. The Campbell-Hausdorff Formula.- 2. Cartan's Theorem.- 3. Lie's Third Theorem.- 4. Some Properties of Lie Groups in the Large.- 5. Gauss's Decomposition.- 6. Iwasawa's Decomposition.- 7. The Universal Covering Group of a Semisimple Compact Lie Group.- 8. Complex Semisimple Lie Groups and Their Real Forms.- XII Finite-Dimensional Irreducible Representations of Semisimple Lie Groups.- 1. Representations of Complex Semisimple Lie Groups.- 2. Representations of Real Semisimple Lie Groups.- A: Monographs and Textbooks.- B: Journal Articles.
- 巻冊次
-
: pbk ISBN 9781461381440
内容説明
Author's Preface to the Russian Edition This book is written for advanced students, for predoctoral graduate stu dents, and for professional scientists-mathematicians, physicists, and chemists-who desire to study the foundations of the theory of finite dimensional representations of groups. We suppose that the reader is familiar with linear algebra, with elementary mathematical analysis, and with the theory of analytic functions. All else that is needed for reading this book is set down in the book where it is needed or is provided for by references to standard texts. The first two chapters are devoted to the algebraic aspects of the theory of representations and to representations of finite groups. Later chapters take up the principal facts about representations of topological groups, as well as the theory of Lie groups and Lie algebras and their representations. We have arranged our material to help the reader to master first the easier parts of the theory and later the more difficult. In the author's opinion, however, it is algebra that lies at the heart of the whole theory. To keep the size of the book within reasonable bounds, we have limited ourselves to finite-dimensional representations. The author intends to devote another volume to a more general theory, which includes infinite dimensional representations.
目次
- I Algebraic Foundations of Representation Theory.- 1. Fundamental Concepts of Group Theory.- 2. Fundamental Concepts and the Simplest Propositions of Representation Theory.- II Representations of Finite Groups.- 1. Basic Propositions of the Theory of Representations of Finite Groups.- 2. The Group Algebra of a Finite Group.- 3. Representations of the Symmetric Group.- 4. Induced Representations.- 5. Representations of the Group SL (2, Fq).- III Basic Concepts of the Theory of Representations of Topological Groups.- 1. Topological Spaces.- 2. Topological Groups.- 3. Definition of a Finite-Dimensional Representation of a Topological Group
- Examples.- 4. General Definition of a Representation of a Topological Group.- IV Representations of Compact Groups.- 1. Compact Topological Groups.- 2. Representations of Compact Groups.- 3. The Group Algebra of a Compact Group.- V Finite-Dimensional Representations of Connected Solvable Groups
- the Theorem of Lie.- 1. Connected Topological Groups.- 2. Solvable and Nilpotent Groups.- 3. Lie's Theorem.- VI Finite-Dimensional Representations of the Full Linear Group.- 1. Some Subgroups of the Group G.- 2. Description of the Irreducible Finite-Dimensional Representations of the Group GL (n, C).- 3. Decomposition of a Finite-Dimensional Representation of the Group GL(n, C) into Irreducible Representations.- VII Finite-Dimensional Representations of the Complex Classical Groups.- 1. The Complex Classical Groups.- 2. Finite-Dimensional Continuous Representations of the Complex Classical Groups.- VIII Covering Spaces and Simply Connected Groups.- 1. Covering Spaces.- 2. Simply Connected Spaces and the Principle of Monodromy.- 3. Covering Groups.- 4. Simple Connectedness of Certain Groups.- IX Basic Concepts of Lie Groups and Lie Algebras.- 1. Analytic Manifolds.- 2. Lie Algebras.- 3. Lie Groups.- X Lie Algebras.- 1. Some Definitions.- 2. Representations of Nilpotent and Solvable Lie Algebras.- 3. Radicals of a Lie Algebra.- 4. The Theory of Replicas.- 5. The Killing Form
- Criteria for Solvability and Semisimplicity of a Lie Algebra.- 6. The Universal Enveloping Algebra of a Lie Algebra.- 7. Semisimple Lie Algebras.- 8. Cartan Subalgebras.- 9. The Structure of Semisimple Lie Algebras.- 10. Classification of Simple Lie Algebras.- 11. The Weyl Group of a Semisimple Lie Algebra.- 12. Linear Representations of Semisimple Complex Lie Algebras.- 13. Characters of Finite-Dimensional Irreducible Representations of a Semisimple Lie Algebra.- 14. Real Forms of Semisimple Complex Lie Algebras.- 15. General Theorems on Lie Algebras.- XI Lie Groups.- 1. The Campbell-Hausdorff Formula.- 2. Cartan's Theorem.- 3. Lie's Third Theorem.- 4. Some Properties of Lie Groups in the Large.- 5. Gauss's Decomposition.- 6. Iwasawa's Decomposition.- 7. The Universal Covering Group of a Semisimple Compact Lie Group.- 8. Complex Semisimple Lie Groups and Their Real Forms.- XII Finite-Dimensional Irreducible Representations of Semisimple Lie Groups.- 1. Representations of Complex Semisimple Lie Groups.- 2. Representations of Real Semisimple Lie Groups.- A: Monographs and Textbooks.- B: Journal Articles.
「Nielsen BookData」 より