Geometry and probability in Banach spaces
著者
書誌事項
Geometry and probability in Banach spaces
(Lecture notes in mathematics, 852)
Springer-Verlag, 1981
- : Berlin
- : New York
大学図書館所蔵 全77件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 99
Includes index
内容説明・目次
目次
Type and cotype for a Banach space p-summing maps.- Pietsch factorization theorem.- Completely summing maps. Hilbert-Schmidt and nuclear maps.- p-integral maps.- Completely summing maps: Six equivalent properties. p-Radonifying maps.- Radonification Theorem.- p-Gauss laws.- Proof of the Pietsch conjecture.- p-Pietsch spaces. Application: Brownian motion.- More on cylindrical measures and stochastic processes.- Kahane inequality. The case of Lp. Z-type.- Kahane contraction principle. p-Gauss type the Gauss type interval is open.- q-factorization, Maurey's theorem Grothendieck factorization theorem.- Equivalent properties, summing vs. factorization.- Non-existence of (2+?)-Pietsch spaces, Ultrapowers.- The Pietsch interval. The weakest non-trivial superproperty. Cotypes, Rademacher vs. Gauss.- Gauss-summing maps. Completion of grothendieck factorization theorem. TLC and ILL.- Super-reflexive spaces. Modulus of convexity, q-convexity "trees" and Kelly-Chatteryji Theorem Enflo theorem. Modulus of smoothness, p-smoothness. Properties equivalent to super-reflexivity.- Martingale type and cotype. Results of Pisier. Twelve properties equivalent to super-reflexivity. Type for subspaces of Lp (Rosenthal Theorem).
「Nielsen BookData」 より