Numerical solution of nonlinear equations : proceedings, Bremen, 1980
Author(s)
Bibliographic Information
Numerical solution of nonlinear equations : proceedings, Bremen, 1980
(Lecture notes in mathematics, 878)
Springer-Verlag, 1981
- : Berlin
- : New York
Available at 77 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Conference held July 21-25, 1980, under the sponsorship of the Forschungsschwerpunkt "Dynamische Systeme", Universität Bremen, and the W. Blaschke Gesellschaft, Hamburg
Includes bibliographies
Description and Table of Contents
Table of Contents
A survey of homotopy methods for smooth mappings.- Discrete correction methods for operator equations.- A duffing equation with more than 20 branch points.- Einschliessungssatze fur Fixpunkte.- A numerically stable update for simplicial algorithms.- Numerical integration of the Davidenko equation.- Fixpunktprinzipien und Freie Randwertaufgaben.- A derivative-free arc continuation method and a bifurcation technique.- An introduction to variable dimension algorithms for solving systems of equations.- Labelling rules and orientation: On Sperner's lemma and brouwer degree.- On the numerical solution of contact problems.- Positive and spurious solutions of nonlinear eigenvalue problems.- Change of structure and chaos for solutions of (t) = ?f(x(t?1)).- Chaotic mappings on S1 periods one, two, three imply chaos on S1.- An algorithm for ultrasonic tomography based on inversion of the Helmholtz equation.- On the numerical approximation of secondary bifurcation problems.- Some improvements of classical iterative methods for the solution of nonlinear equations.
by "Nielsen BookData"