Functional analysis methods in numerical analysis : special session, American Mathematical Society, St. Louis, Missouri, 1977
Author(s)
Bibliographic Information
Functional analysis methods in numerical analysis : special session, American Mathematical Society, St. Louis, Missouri, 1977
(Lecture notes in mathematics, 701)
Springer-Verlag, 1979
- : Berlin
- : New York
Available at 78 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Table of Contents
A strategy theory of solving equations.- A unified approach to the approximate solution of linear integral equations.- The topological degree applied to some problems in approximation theory.- Numerical solution of eigentuple-eigenvector problems in Hilbert spaces.- Improved convergence for linear systems using three-part splittings.- Nonselfadjoint spectral approximation and the finite element method.- Hermite methods for the numerical solution of ordinary initial value problems.- On least squares methods for linear two-point boundary value problems.- Averaging to improve convergence of iterative processes.- On the perturbation theory for generalized inverse operators in Banach spaces.- Boundary value problems for systems of nonlinear partial differential equations.- On the solvability of nonlinear equations involving abstract and differential operators.- Perturbation methods for the solution of linear problems.- Difference approximations to boundary value problems with deviating arguments.- Applications of Banach space interpolation to finite element theory.- A minimax problem in plasticity theory.
by "Nielsen BookData"