Ordinary and partial differential equations : proceedings of the fifth conference held at Dundee, Scotland, March 29-31, 1978
Author(s)
Bibliographic Information
Ordinary and partial differential equations : proceedings of the fifth conference held at Dundee, Scotland, March 29-31, 1978
(Lecture notes in mathematics, 827)
Springer-Verlag, 1980
- : Berlin
- : New York
- Other Title
-
Ordinary and partial differential equations
Available at 74 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
-
Library & Science Information Center, Osaka Prefecture University
: New YorkNDC8:410.8||||10007189779
Note
Bibliography: p. 268-271
Includes index
Description and Table of Contents
Table of Contents
Exponential behaviour of eigenfunctions and gaps in the essential spectrum.- Laplace integrals in singular differential and difference equations.- Continuation and reflection of solutions to parabolic partial differential equations.- Legendre polynomials and singular differential operators.- Singularities of 3-dimensional potential functions at the vertices and at the edges of the boundary.- Singular perturbations of elliptic boundary value problems.- Singular perturbations of semilinear second order systems.- Higher order necessary conditions in optimal control theory.- Range of nonlinear perturbations of linear operators with an infinite dimensional kernel.- Some classes of integral and integro-differential equations of convolutional type.- Multiparameter periodic differential equations.- Uniform scale functions and the asymptotic expansion of integrals.
by "Nielsen BookData"