Hilbert space operators : proceedings, California State University Long Beach, Long Beach, California, 20-24 June 1977
Author(s)
Bibliographic Information
Hilbert space operators : proceedings, California State University Long Beach, Long Beach, California, 20-24 June 1977
(Lecture notes in mathematics, 693)
Springer-Verlag, 1978
- : Berlin
- : New York
Available at 80 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographies and index
Description and Table of Contents
Table of Contents
Integral operators.- Multiplication operators.- Composition operators on hilbert spaces.- Ergodic groups of substitution operators associated with algebraically monothetic groups.- Commutants of analytic toeplitz operators with automorphic symbol.- Another description of nest algebras.- Weighted translation semigroups on L2[0,?].- Weighted translation and weighted shift operators.- An operator not a shift, integral, nor multiplication.- Strictly cyclic operator algebras and approximation of operators.- On singular self-adjoint sturm-liouville operators.- Extensions of commuting subnormal operators.- Non-self-adjoint crossed products.- Some operators on L2(dm) associated with finite blaschke products.- A concrete representation of index theory in von Neumann algebras.- A classification problem for essentially n-normal operators.- Some problems in operator theory.- On a question of Deddens.- The fuglede commutativity theorem modulo the hilbert-schmidt class and generating functions for matrix operators.
by "Nielsen BookData"