Global bifurcations and chaos : analytical methods
著者
書誌事項
Global bifurcations and chaos : analytical methods
(Applied mathematical sciences, v. 73)
Springer-Verlag, c1988
- : us
- : gw
- : softcover
大学図書館所蔵 全106件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Softcover reprint of the hardcover 1st edition 1988"--T.p. verso of softcover
Bibliography: p. [477]-487
Includes index
内容説明・目次
内容説明
Global Bifurcations and Chaos: Analytical Methods is unique in the literature of chaos in that it not only defines the concept of chaos in deterministic systems, but it describes the mechanisms which give rise to chaos (i.e., homoclinic and heteroclinic motions) and derives explicit techniques whereby these mechanisms can be detected in specific systems. These techniques can be viewed as generalizations of Melnikov's method to multi-degree of freedom systems subject to slowly varying parameters and quasiperiodic excitations. A unique feature of the book is that each theorem is illustrated with drawings that enable the reader to build visual pictures of global dynamcis of the systems being described. This approach leads to an enhanced intuitive understanding of the theory.
目次
1. Introduction: Background for Ordinary Differential Equations and Dynamical Systems.- 1.1. The Structure of Solutions of Ordinary Differential Equations.- 1.1a. Existence and Uniqueness of Solutions.- 1.1b. Dependence on Initial Conditions and Parameters.- 1.1c. Continuation of Solutions.- 1.1d. Autonomous Systems.- 1.1e. Nonautonomous Systems.- 1.1f. Phase Flows.- 1.1g. Phase Space.- 1.1h. Maps.- 1.1 i. Special Solutions.- 1.1j. Stability.- 1.1k. Asymptotic Behavior.- 1.2. Conjugacies.- 1.3. Invariant Manifolds.- 1.4. Transversality, Structural Stability, and Genericity.- 1.5. Bifurcations.- 1.6. Poincare Maps.- 2. Chaos: Its Descriptions and Conditions for Existence.- 2.1. The Smale Horseshoe.- 2.1a. Definition of the Smale Horseshoe Map.- 2.1b. Construction of the Invariant Set.- 2.1c. Symbolic Dynamics.- 2.1d. The Dynamics on the Invariant Set.- 2.1e. Chaos.- 2.2. Symbolic Dynamics.- 2.2a. The Structure of the Space of Symbol Sequences.- 2.2b. The Shift Map.- 2.2c. The Subshift of Finite Type.- 2.2d. The Case of N = ?.- 2.3. Criteria for Chaos: The Hyperbolic Case.- 2.3a. The Geometry of Chaos.- 2.3b. The Main Theorem.- 2.3c. Sector Bundles.- 2.3d. More Alternate Conditions for Verifying Al and A2.- 2.3e. Hyperbolic Sets.- 2.3f. The Case of an Infinite Number of Horizontal Slabs.- 2.4. Criteria for Chaos: The Nonhyperbolic Case.- 2.4a. The Geometry of Chaos.- 2.4b. The Main Theorem.- 2.4c. Sector Bundles.- 3. Homoclinic and Heteroclinic Motions.- 3.1. Examples and Definitions.- 3.2. Orbits Homoclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- 3.2a. The Technique of Analysis.- 3.2b. Planar Systems.- 3.2c. Third Order Systems.- i) Orbits Homoclinic to a Saddle Point with Purely Real Eigenvalues.- ii) Orbits Homoclinic to a Saddle-Focus.- 3.2.d. Fourth Order Systems.- i) A Complex Conjugate Pair and Two Real Eigenvalues.- ii) Silnikov's Example in ?4.- 3.2e. Orbits Homoclinic Fixed Points of 4-Dimensional Autonomous Hamiltonian Systems.- i) The Saddle-Focus.- ii) The Saddle with Purely Real Eigenvalues.- iii) Devaney's Example: Transverse Homoclinic Orbits in an Integrable Systems.- 3.2f. Higher Dimensional Results.- 3.3. Orbits Heteroclinic to Hyperbolic Fixed Points of Ordinary Differential Equations.- i) A Heteroclinic Cycle in ?3.- ii) A Heteroclinic Cycle in ?4.- 3.4. Orbits Homoclinic to Periodic Orbits and Invariant Tori.- 4. Global Perturbation Methods for Detecting Chaotic Dynamics.- 4.1. The Three Basic Systems and Their Geometrical Structure.- 4.1a. System I.- i) The Geometric Structure of the Unperturbed Phase Space.- ii) Homoclinic Coordinates.- iii) The Geometric Structure of the Perturbed Phase Space.- iv) The Splitting of the Manifolds.- 4.1b. System II.- i) The Geometric Structure of the Unperturbed Phase Space.- ii) Homoclinic Coordinates.- iii) The Geometric Structure of the Perturbed Phase Space.- iv) The Splitting of the Manifolds.- 4.1c. System III.- i) The Geometric Structure of the Unperturbed Phase Space.- ii) Homoclinic Coordinates.- iii) The Geometric Structure of the Perturbed Phase Space.- iv) The Splitting of the Manifolds.- v) Horseshoes and Arnold Diffusion.- 4.1d. Derivation of the Melnikov Vector.- i) The Time Dependent Melnikov Vector.- ii) An Ordinary Differential Equation for the Melnikov Vector.- iii) Solution of the Ordinary Differential Equation.- iv) The Choice of SP,?S and SP,?u.- v) Elimination of t0.- 4.1e. Reduction to a Poincare Map.- 4.2. Examples.- 4.2a. Periodically Forced Single Degree of Freedom Systems.- i) The Pendulum: Parametrically Forced at O (?) Amplitude, O (1) Frequency.- ii) The Pendulum: Parametrically Forced at O (1) Amplitude, O (?) Frequency.- 4.2.b. Slowly Varying Oscillators.- i) The Duffing Oscillator with Weak Feedback Control.- ii) The Whirling Pendulum.- 4.2c. Perturbations of Completely Integrable, Two Degree of Freedom Hamiltonian System.- i) A Coupled Pendulum and Harmonic Oscillator.- ii) A Strongly Coupled Two Degree of Freedom System.- 4.2d. Perturbation of a Completely Integrable Three Degree of Freedom System: Arnold Diffusion.- 4.2e. Quasiperiodically Forced Single Degree of Freedom Systems.- i) The Duffing Oscillator: Forced at O (?) Amplitude with N O (1) Frequencies.- ii) The Pendulum: Parametrically Forced at O (?) Amplitude, O (1) Frequency and O (1) Amplitude, O (?) Frequency.- 4.3. Final Remarks.- i) Heteroclinic Orbits.- ii) Additional Applications of Melnikov's Method.- iii) Exponentially Small Melnikov Functions.- References.
「Nielsen BookData」 より