Differential geometrical methods in theoretical physics
著者
書誌事項
Differential geometrical methods in theoretical physics
(NATO ASI series, ser. C . Mathematical and physical sciences ; v. 250)
Kluwer Academic Publishers, c1988
大学図書館所蔵 全40件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
16th International Conference on Differential Geometrical Methods in Theoretical Physics, Como, Italy, 24-29 August 1987
Includes bibliographies
内容説明・目次
内容説明
After almost half a century of existence the main question about quantum field theory seems still to be: what does it really describe? and not yet: does it provide a good description of nature? J. A. Swieca Ever since quantum field theory has been applied to strong int- actions, physicists have tried to obtain a nonperturbative und- standing. Dispersion theoretic sum rules, the S-matrix bootstrap, the dual models (and their reformulation in string language) and s the conformal bootstrap of the 70 are prominent cornerstones on this thorny path. Furthermore instantons and topological solitons have shed some light on the nonperturbati ve vacuum structure respectively on the existence of nonperturbative "charge" s- tors. To these attempts an additional one was recently added', which is yet not easily describable in terms of one "catch phrase". Dif- rent from previous attempts, it is almost entirely based on new noncommutative algebraic structures: "exchange algebras" whose "structure constants" are braid matrices which generate a ho- morphism of the infini te (inducti ve limi t) Artin braid group Boo into a von Neumann algebra.
Mathematically there is a close 2 relation to recent work of Jones * Its physical origin is the resul t of a subtle analysis of Ei nstein causality expressed in terms of local commutati vi ty of space-li ke separated fields. It is most clearly recognizable in conformal invariant quantum field theories.
目次
The Impact of Physics on Geometry.- The Impact of Physics on Geometry.- Mathematical Contributions.- Weyl's Program and Modern Physics.- Elliptic Genera of Level N for Complex Manifolds.- The Principle of Triality and A Distinguished Unitary Representation of SO(4,4).- On E 10.- Special Aspects of String Theory.- Operator Methods in String Theory.- On Strings and J.Douglas Variational Principle.- Groupoids and Lie Bigebras in Gauge and String Theories.- Conformal Invariance and Integrable Systems.- The Definition of Conformal Field Theory.- Statistics and Monodromy in Two- and Three-Dimensional Quantum * Field Theory.- Quantum Groups (YBZF Algebras) and Integrable Theories: An Overview.- Integrable Systems and Conformal Invariance.- Algebraic Aspects of Non-Perturbative Quantum Field Theories.- Two Classical Domains: - Symplectic Structures in Physics - General Relativity.- The pairing method and bosonic anomalies.- A Multisymplectic Approach to the KdV Equation.- Singular Points in Level Sets of the Momentum Map and Quantum Theory.- Killing Spinors and Universality of the Hijazi Inequality.- Towards a Renormalizable Theory of Quantum Gravity.- Gauge Theory for Diffeomorphism Groups.- Quantum Field Theory in Curved Spacetime.- Supersymmetric Structures.- Supertheories.- The Integrability Of N = 16 Supergravity.- Conformal Invariant Supersymmetric Theories in Four Dimensions: A Practical Application of BRS Cohomology.- Supermanifolds, Supermanifold Cohomology, and Super Vector Bundles.- Representations of Lie Superalgebras an Introduction.- Concluding Remarks.- Concluding Remarks.- Observations of Two of Our Brightest Stars.- Observations of Two of Our Brightest Stars.
「Nielsen BookData」 より