Order and chaos in nonlinear physical systems
著者
書誌事項
Order and chaos in nonlinear physical systems
(Physics of solids and liquids)
Plenum Press, c1988
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies and index
内容説明・目次
内容説明
This volume is concerned with the theoretical description of patterns and instabilities and their relevance to physics, chemistry, and biology. More specifically, the theme of the work is the theory of nonlinear physical systems with emphasis on the mechanisms leading to the appearance of regular patterns of ordered behavior and chaotic patterns of stochastic behavior. The aim is to present basic concepts and current problems from a variety of points of view. In spite of the emphasis on concepts, some effort has been made to bring together experimental observations and theoretical mechanisms to provide a basic understanding of the aspects of the behavior of nonlinear systems which have a measure of generality. Chaos theory has become a real challenge to physicists with very different interests and also in many other disciplines, of which astronomy, chemistry, medicine, meteorology, economics, and social theory are already embraced at the time of writing. The study of chaos-related phenomena has a truly interdisciplinary charac ter and makes use of important concepts and methods from other disciplines. As one important example, for the description of chaotic structures the branch of mathematics called fractal geometry (associated particularly with the name of Mandelbrot) has proved invaluable. For the discussion of the richness of ordered structures which appear, one relies on the theory of pattern recognition. It is relevant to mention that, to date, computer studies have greatly aided the analysis of theoretical models describing chaos.
目次
1. Chaos, Order, Patterns, Fractals-An Overview.- 2. An Introduction to the Properties of One-Dimensional Difference Equations.- 3. Spectral Transform and Solitons: How to Solve and Investigate Nonlinear Evolution Equations.- 4. Homogeneous Isothermal Oscillations and Spatiotemporal Organization in Chemical Reactions.- 5. Synergetics-From Physics to Biology.- 6. Instabilities and Chaos in Lasers: Introduction to Hyperchaos.- 7. Nonlinear Optics of Bistability and Pulse Propagation.- 8. Electron and Phonon Instabilities.- 9. Fractals in Physics: Introductory Concepts.- 10. Phase Transitions.- 11. Classical Chaos and Quantum Eigenvalues.- 12. Renormalization Description of Transitions to Chaos.- 13. Order and Chaos in Hamiltonian Systems.- 14. Elementary Symbolic Dynamics.- 15. Nonlinear Mechanical Properties.- 16. Reconstruction of Piecewise Smooth Surfaces Using Simple Analog and Hybrid Networks.- 17. The Slaving Principle of Synergetics-An Outline.
「Nielsen BookData」 より