Instrumental analysis in the biological sciences

書誌事項

Instrumental analysis in the biological sciences

M.H. Gordon and R. Macrae

Blackie, 1987

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

Includes bibliographies and index

内容説明・目次

内容説明

Instrumental techniques of analysis have now moved from the confines of the chemistry laboratory to form an indispensable part of the analytical armoury of many workers involved in the biological sciences. It is now quite out of the question to considcr a laboratory dealing with the analysis of biological materials that is not equipped with an extensive range of instrumentation. Recent years have also seen a dramatic improvement in the ease with which such instruments can be used, and the quality and quantity of the analytical data that they can produce. This is due in no sm all part to the ubiquitous use of microprocessors and computers for instrumental control. However, under these circumstances there is areal danger of the analyst adopting a 'black box' mentality and not treating the analytical data produced in accordance with the limitations that may be inherent in the method used. Such a problem can only be overcome if the operator is fully aware of both the theoretical and instrumental constraints relevant to the technique in question. As the complexity and sheer volume of material in undergraduate courses increases, there is a tendency to reduce the amount of fundamental material that is taught prior to embarking on the more applied aspects. This is nowhere more apparent than in the teaching of instrumental techniques of analysis.

目次

1 Introduction to instrumental methods of analysis.- 1.1 Precision and accuracy.- 1.2 Speed of analysis.- 1.3 Cost.- 1.4 Safety.- 1.5 Automation.- Recommended general texts.- 2 Liquid chromatography.- 2.1 Introduction.- 2.2 Theory of liquid chromatography.- 2.2.1 Chromatography.- 2.2.2 Band broadening.- 2.3 Modes of chromatography.- 2.3.1 Adsorption chromatography.- 2.3.2 Liquid-liquid partition chromatography.- 2.3.3 Ion-exchange chromatography.- 2.3.4 Size-exclusion chromatography.- 2.3.5 Affinity chromatography.- 2.4 Chromatographic techniques.- 2.4.1 Paper chromatography.- 2.4.2 Thin-layer chromatography.- 2.4.3 Column chromatography.- 2.4.4 High-performance liquid chromatography.- 2.5 Sample preparation.- 2.5.1 Extraction.- 2.5.2 Sample clean-up.- References.- 3 Gas chromatography.- 3.1 Introduction.- 3.2 Principles.- 3.3 The chromatographic system.- 3.4 GLC columns.- 3.5 Principles of separation.- 3.5.1 Chromatographic retention.- 3.5.2 Band broadening.- 3.5.3 Separation of poorly resolved peaks.- 3.6 Stationary phases.- 3.7 Gas-solid chromatography.- 3.8 Detectors.- 3.8.1 Flame ionization detector (FID).- 3.8.2 Thermionic detector (TD).- 3.8.3 Flame photometric detector (FPD).- 3.8.4 Electron capture detector (FCD).- 3.8.5 Thermal conductivity detector (TCD).- 3.8.6 Mass spectrometer.- 3.8.7 Infrared detector.- 3.8.8 Other detectors.- 3.9 Sample preparation.- 3.9.1 Headspace analysis.- 3.9.2 Derivatization.- 3.10 Quantification.- References.- 4 Electrophoresis.- 4.1 Introduction.- 4.2 Effect of pH on charge.- 4.3 Techniques of electrophoresis.- 4.3.1 Moving-boundary electrophoresis.- 4.3.2 Paper electrophoresis.- 4.3.3 Cellulose-acetate electrophoresis.- 4.3.4 Rod-gel electrophoresis.- 4.3.5 Slab-gel electrophoresis.- 4.3.6 Immunoelectrophoresis.- 4.4 Isotachophoresis.- References.- 5 Introduction to spectroscopy.- 5.1 Spectroscopy.- 5.2 The electromagnetic spectrum.- 5.3 Molecular energy states.- 5.4 Molecular transitions.- 5.5 Quantitative analysis.- 5.6 Determination of a spectrum.- Further reading.- 6 UV-visible spectrophotometry.- 6.1 Introduction.- 6.2 Electronic energy levels.- 6.3 Electronic transitions.- 6.3.1 Solvent effects.- 6.3.2 Effect of conjugation.- 6.4 Qualitative analysis.- 6.5 Quantitative analysis.- 6.6 Calibration of spectrophotometers.- 6.7 Sample presentation.- 6.8 Difference spectrophotometry.- 6.9 Spectrophotometric titrations.- 6.10 Derivative spectrophotometry.- 6.11 Dual-wavelength spectrophotometry.- 6.12 Spectrophotometers and colorimeters.- 6.12.1 Radiation source.- 6.12.2 Monochromators.- 6.12.3 Filters.- 6.12.4 Detectors.- 6.13 Turbidimetry and nephelometry.- 6.14 Colour and gloss of solid samples.- References.- 7 Fluorescence and phosphorescence spectrophotometry.- 7.1 Introduction.- 7.2 Fluorophores.- 7.3 Excitation and emission spectra.- 7.4 Quantitative measurements.- 7.5 Factors affecting fluorescence spectra.- 7.5.1 Quenching of fluorescence.- 7.5.2 Solvent effects.- 7.5.3 The effect of pH.- 7.5.4 Polarization effects.- 7.5.5 Fluorescence lifetimes.- 7.6 Instruments for fluorescence studies.- 7.6.1 Light sources.- 7.6.2 Monochromators.- 7.6.3 Sample details.- 7.6.4 Filter fluorometers.- 7.7 Applications of fluorescence spectrophotometry.- References.- 8 Infrared spectroscopy.- 8.1 Introduction.- 8.2 Molecular vibrations.- 8.3 Qualitative analysis.- 8.4 Quantitative analysis.- 8.5 Instrumentation.- 8.5.1 Sources.- 8.5.2 Monochromators.- 8.5.3 Detectors.- 8.5.4 Double-beam spectrometers.- 8.5.5 Fourier transform infrared spectroscopy (FT-IR).- 8.6 Sample presentation.- 8.7 Attenuated total reflectance.- 8.8 Near-infrared reflectance analysis.- References.- 9 Nuclear magnetic resonance spectroscopy.- 9.1 Introduction.- 9.2 Principles.- 9.2.1 Nuclear energy levels.- 9.2.2 Magnetic resonance.- 9.2.3 Relaxation processes.- 9.2.4 Principles of NMR measurement.- 9.3 Pulse NMR spectrometer.- 9.3.1 The magnet.- 9.3.2 Radiofrequency generator.- 9.3.3 Probe unit and sample.- 9.3.4 Field/frequency lock.- 9.3.5 Computer.- 9.4 Chemical shifts.- 9.5 Spin-spin coupling.- 9.6 Integration.- 9.7 Further techniques for elucidation of NMR spectra.- 9.7.1 Recording the spectrum at higher field strength.- 9.7.2 Addition of D2O.- 9.7.3 Double-resonance experiments.- 9.7.4 Shift reagents.- 9.7.5 Two-dimensional NMR.- 9.8 Wide-line NMR.- 9.9 In-vivo NMR.- 9.9.1 Topical NMR.- 9.9.2 Surface coils.- 9.9.3 NMR imaging.- References.- 10 Electron spin resonance.- 10.1 Principles.- 10.2 ESR spectra.- 10.2.1 The g-factor.- 10.2.2 Hyperfine splitting.- 10.3 ESR spectrometer.- 10.4 Sample preparation.- 10.5 Spin labelling.- 10.6 Quantitative analysis.- References.- 11 Flame techniques.- 11.1 Introduction.- 11.2 Flame emission spectrometry (FES).- 11.2.1 Interference effects.- 11.2.2 Quantitative measurements.- 11.3 Atomic absorption spectrometry (AAS).- 11.3.1 Interference effects.- 11.3.2 Quantitative measurements.- 11.3.3 Alternative sampling techniques.- 11.4 Applications.- References.- 12 Mass spectrometry.- 12.1 Introduction.- 12.2 Mass spectrometer.- 12.2.1 Inlet systems.- 12.2.2 Ion sources.- 12.2.3 Mass analysis.- 12.2.4 Detectors.- 12.2.5 Data handling and display.- 12.3 Analysis of mixtures.- 12.3.1 GC-MS interfaces.- 12.3.2 LC-MS interfaces.- 12.3.3 Tandem mass spectrometry.- 12.4 Determination of molecular structures.- 12.4.1 Bond cleavage.- 12.4.2 Rearrangements.- 12.4.3 Metastable peaks.- References.- 13 Electrochemical techniques.- 13.1 Introduction.- 13.1.1 Nature of solutions.- 13.1.2 Electrode reactions.- 13.2 Conductivity of solutions.- 13.2.1 Measurement of conductivity.- 13.2.2 Analytical applications.- 13.3 Voltammetry.- 13.3.1 Polarography.- 13.3.2 Amperometric titrations.- 13.4 Potentiometric measurements.- 13.4.1 pH measurement.- 13.4.2 Ion-selective electrodes.- 13.4.3 Potentiometric titrations.- 13.4.4 Oxygen electrodes.- References.

「Nielsen BookData」 より

詳細情報

ページトップへ