Dimension theory
Author(s)
Bibliographic Information
Dimension theory
(North-Holland mathematical library, v. 19)
North-Holland Pub., 1978
- Other Title
-
Teoria wymiaru
Available at 49 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Translation of Teoria wymiaru
Bibliography: p. [289]-305
Includes index
Description and Table of Contents
Description
This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler-Lagrange mapping - Helmholtz form and the inverse problem- Symmetries and the Noether's theory of conservation laws- Regularity and the Hamilton theory- Variational sequences - Differential invariants and natural variational principles
Table of Contents
Tentative Table of Contents:PrefaceList of Standard SymbolsChapter 1: Smooth ManifoldsChapter 2: Analysis on ManifoldsChapter 3: Lie Transformation GroupsChapter 4: Lagrange StructuresChapter 5: Elementary Sheaf TheoryChapter 6: Variational Sequences on Fibered ManifoldsChapter 7: Invariant Variational Functionals on Principal BundlesChapter 8: Differential Invariants Chapter 9: Natural Variational Principles AppendicesBibliographyIndex
by "Nielsen BookData"