Excited states of biopolymers

Bibliographic Information

Excited states of biopolymers

edited by Robert F. Steiner

Plenum Press, c1983

Available at  / 10 libraries

Search this Book/Journal

Note

Includes bibliographical references and index

Description and Table of Contents

Description

During the past decade, fluorescence techniques have come to occupy a position of central importance in biochemistry. Such areas as laser techniques, radiation- less energy transfer, and nanosecond fluorometry have evolved from esoteric research specialties into standard procedures that are applied routinely to bio- chemical problems. Indeed, discussion of the above three areas occupies the greater part of this book. Its level and approach are appropriate for the bio- logical or physical scientist who is interested in applying fluorescence techniques, but is not necessarily an expert in this area. The coverage of the literature has, in general, been selective rather than exhaustive. It is likely that what is summarized here will prove resistant to the erosion of time and provide a basis for the future evolution of this rapidly developing area of science. Robert F. Steiner Catonsville, Maryland vii Contents Chapter 1 Some Principles Governing the Luminescence of Organic Molecules R. M Hochstrasser 1. Introduction ...1 2. Spontaneous Emission ...2 2. 1. General Considerations ...2 2. 2. Luminescence from Nearby States ...4 2. 3. Multiple State Decay ...4 3. Molecular Luminescence Characteristics ...5 3. 1. The Transition Dipole Moment ...6 3. 2. Determination of Transition-Moment Directions from Fluorescence ...8 3. 3. Polarization of Fluorescence from Crystals...9 4. Principles of Luminescence Experiments Carried Out with Lasers...12 4. 1. Nonlinear Processes and Optical Pumping ...12 5. Coherent Interactions of Molecules and Light ...16 5. 1. The Distinctions between Fluorescence and Resonance Raman Effects 17 6. Ultrafast Fluorescence Decay ...

Table of Contents

1 Some Principles Governing the Luminescence of Organic Molecules.- 1. Introduction.- 2. Spontaneous Emission.- 2.1. General Considerations.- 2.2. Luminescence from Nearby States.- 2.3. Multiple State Decay.- 3. Molecular Luminescence Characteristics.- 3.1. The Transition Dipole Moment.- 3.2. Determination of Transition-Moment Directions from Fluorescence.- 3.3. Polarization of Fluorescence from Crystals.- 4. Principles of Luminescence Experiments Carried Out with Lasers.- 4.1. Nonlinear Processes and Optical Pumping.- 5. Coherent Interactions of Molecules and Light.- 5.1. The Distinctions between Fluorescence and Resonance Raman Effects.- 6. Ultrafast Fluorescence Decay.- 7. The Effects of Inhomogeneous Distributions.- 8. Bibliography.- 2 Covalent Fluorescent Probes.- 1. Introduction.- 2. Primary Considerations in Fluorescent Labeling of Biomolecules.- 2.1. Reactive Sites in Biomolecules.- 2.2. Reactive Handles on Fluorescent Probes.- 2.3. Fluorophores.- 3. Covalent Labeling of Biomolecules.- 3.1. Solubilization.- 3.2. Removal of Excess Probe.- 3.3. Other Considerations in Labeling.- 4. Selective Modification Reactions.- 4.1. Thiol Modification.- 4.2. Methionine Modification.- 4.3. Histidine Modification.- 4.4. Amine Modification.- 4.5. Tyrosine Modification.- 4.6. Carboxylic Acid Modification.- 4.7. Modification of Other Residues in Proteins.- 4.8. Modification of Nucleic Acids, Polysaccharides, and Glycoproteins.- 4.9. Modification by Photoactivated Fluorescent Probes.- 5. References.- 3 Nanosecond Pulse Fluorimetry of Proteins.- 1. Introduction.- 2. Instrumentation and Data Analyses.- 2.1. Single-Photon-Counting Nanosecond-Pulse Fluorimeter.- 2.2. Fluorescent Decay Data Analysis.- 3. Fluorescence Lifetime Studies.- 3.1. Lifetime of Tyrosine and Tryptophan Residues in Proteins.- 3.2. Fluorescence Decay of Coenzymes NADH and NADPH.- 4. Fluorescence Quenching Studies.- 4.1. Background.- 4.2. Fluorescence Lifetime Reference Standards.- 4.3. Long-lived Pyrene Probes in Quenching Studies.- 4.4. Dynamic Structural Fluctuations of Proteins in Solution.- 5. Fluorescence Energy Transfer for Distance Measurements in Proteins.- 5.1. Evaluation of Energy Transfer Efficiency and Calculation of Separation Distance.- 5.2. Some Practical Considerations and Problems Involved in Energy Transfer Experiments.- 5.3. Applications in Protein Systems.- 5. Nanosecond Pulse Fluorimetry Studies of Muscle Contractile Proteins.- 6.1. Pyrene Lifetime and Excimer Fluorescence in Labeled Actin and Tropomyosin.- 6.2. 1, N6-Ethenoadenosine Triphosphate (?-ATP).- 6.3. Distance Measurement Studies of Muscle Contractile Proteins by Fluorescence Energy Transfer.- 7. References.- 4 The Use of Fluorescence Anisotropy Decay in the Study of Biological Macromolecules.- 1. Introduction.- 1.1. Application of Fluorescence Anisotropy.- 2. Theory.- 2.1. Basic Principles.- 2.2. The Effect of the Shape of the Excitation Pulse.- 2.3. The Time Decay of Fluorescence Anisotropy.- 2.4. The Rotational Diffusion of Rigid Ellipsoidal Particles.- 2.5. The Time Decay of Anisotropy for Ellipsoidal Particles.- 2.6. Computer Simulation of Anisotropy Decay.- 2.7. Internal Rotation.- 2.8. Analysis of Multiexponential Decay of Anisotropy.- 2.9. Relation Between Static and Dynamic Anisotropics.- 3. Experimental Procedures: Measurement of Anisotropy Decay.- 4. Applications of Fluorescence Anisotropy.- 4.1. Anisotropic Rotation.- 4.2. The Red Edge Effect in Aromatic Molecules.- 4.3. A Comparative Study of Two Rigid Proteins: Lysozyme and ?-Laetalbumin.- 4.4. Proteins with Internal Rotation Involving a Weil-Defined Domain: The Immunoglobulins.- 4.5. Internal Flexibility of Multidomain Proteins: Myosin.- 4.6. Internal Flexibility of Multidomain Proteins: F-Actin.- 4.7. Internal Flexibility of Multidomain Proteins: Fibrinogen.- 4.8. Internal Flexibility: Motion of Intrinsic Fluorophores.- 4.9. Librational Motion of Fluorescent Probes Linked to Hemoglobin and Its Subunits.- 5. References.- 5 Plasma Lipoproteins: Fluorescence as a Probe of Structure and Dynamics.- 1. Introduction.- 1.1. Native Lipoproteins.- 1.2. Lipoprotein Function.- 1.3. Isolation of Lipoproteins and Their Apoproteins.- 1.4. Reassembled Lipoproteins.- 2. Structural Studies of Native Lipoproteins, Apoproteins, and Reassembled Lipoproteins, Using Intrinsic Protein Fluorescence and Covalently Attached Fluorescence Probes.- 2.1. Native Lipoproteins.- 2.2. Apoproteins.- 2.3. Reassembled Lipoproteins.- 3. Extrinsic Fluorescence Probes of Lipoprotein Structure and Function.- 3.1. Native Lipoproteins.- 3.2. Reassembled Lipoproteins.- 3.3. Fluorescence Probes of Lipoprotein Function.- 4. Dynamics of Lipid Transfer.- 5. Summary and Perspectives.- 6. References.- 6 Fluorescent Dye-Nucleic Acid Complexes.- 1. Introduction.- 2. Intercalating and Nonintercalating Dyes.- 2.1. Intercalating Dyes.- 2.2. Nonintercalating Dyes.- 3. Nucleic Acid-Dye Binding Isotherms.- 3.1. Intercalating Dyes.- 3.2. Nonintercalating Dyes.- 4. Fluorescence Lifetimes and Quantum Yields.- 4.1.DNA-Acridine Dye Complexes.- 4.2. Nucleic Acid-Ethidium Bromide Complexes.- 4.3. Bifunctional Intercalating Dyes.- 4.4. Mononucleotide-Dye Complexes.- 5. Decay of Fluorescence Anisotropy.- 5.1. General Considerations.- 5.2. tRNA-Ethidium Bromide Complexes.- 5.3. DNA-Ethidium Bromide and DNA-Acridine Dye Complexes.- 5.4. Anisotropy Decay Due to Energy Transfer.- 6. Radiationless Energy Transfer.- 6.1. Singlet-Singlet Energy Transfer.- 6.2. Nucleic Acid Base-Dye Energy Transfer: Sensitized Fluorescence.- 6.3. Triplet-Singlet and Triplet-Triplet Energy Transfers.- 7. Cytological Applications.- 7.1. Acridine Dyes.- 7.2. Bisbenzimidazole Dyes.- 8. References.

by "Nielsen BookData"

Details

Page Top