書誌事項

Principles of lasers

Orazio Svelto ; translated from Italian and edited by David C. Hanna

Plenum, c1989

3rd ed

タイトル別名

Principi dei laser

この図書・雑誌をさがす
注記

Translation of: Principi dei laser

Includes bibliographies and index

内容説明・目次

内容説明

This third edition, motivated by the numerous and significant developments in the laser field since the publication of the second edition in 1982, is a substantially revised version of the previous edition. The basic philosophy has, however, remained the same, namely, to provide a broad and unified descrip- tion of laser behavior at the simplest level that is compatible with a correct physical understanding. The basic organization of the book has also remained the same. The book is therefore aimed at both classroom teaching and self-study by students in electrical engineering, physics, and chemistry who have an interest in understanding the principles of laser operation. The major additions to this edition are the following: 1. New sections dealing with laser types, in particular x-ray lasers and new solid-state lasers, including alexandrite devices, and a greatly extended description of semiconductor lasers. 2. A more extended treatment of laser mode-locking, including new sections on cavity dumping and pulse compression. 3. A more extended and greatly simplified description of the coherence and statistical properties of laser light as opposed to those of conven- tional light. 4. A greatly extended discussion of the physics of gas discharges. Other important additions include a discussion of some topics from conven- tional optics (e.g., ray matrix methods, Fabry-Perot interferometers, and multilayer dielectric mirrors), Gaussian beam propagation (e.g., the ABeD law), and the theory of relaxation oscillations and active mode-locking.

目次

1. Introductory Concepts.- 1.1. Spontaneous and Stimulated Emission, Absorption.- 1.1.1. Spontaneous Emission.- 1.1.2. Stimulated Emission.- 1.1.3. Absorption.- 1.2. The Laser Idea.- 1.3. Pumping Schemes.- 1.4. Properties of Laser Beams.- 1.4.1. Monochromaticity.- 1.4.2. Coherence.- 1.4.3. Directionality.- 1.4.4. Brightness.- 1.4.5. Short Time Duration.- 1.5. Organization of the Book.- Problems.- 2. Interaction of Radiation with Matter.- 2.1. Introduction.- 2.2. Summary of Blackbody Radiation Theory.- 2.3. Absorption and Stimulated Emission.- 2.3.1. Rates of Absorption and Stimulated Emission.- 2.3.2. Allowed and Forbidden Transitions.- 2.3.3. Line-Broadening Mechanisms.- 2.3.3.1. Homogeneous Broadening.- 2.3.3.2. Inhomogeneous Broadening.- 2.3.3.3. Concluding Remarks and Examples.- 2.3.4. Transition Cross Section, Absorption, and Gain Coefficient.- 2.4. Spontaneous Emission.- 2.4.1. Semiclassical Approach.- 2.4.2. Quantum Electrodynamic Approach.- 2.4.3. Einstein Thermodynamic Treatment.- 2.4.4. Relation between Spontaneous Lifetime and Cross Section.- 2.4.5. Concluding Remarks.- 2.5. Nonradiative Decay.- 2.6. Saturation.- 2.6.1. Saturation of Absorption: Homogeneous Line.- 2.6.2. Gain Saturation: Homogeneous Line.- 2.6.3. Inhomogeneously Broadened Line.- 2.7. Decay of a Many-Atom System.- 2.7.1. Radiation Trapping.- 2.7.2. Superradiance and Superfluorescence.- 2.7.3. Amplified Spontaneous Emission.- 2.8. Degenerate Levels.- 2.9. Molecular Systems.- 2.9.1. Energy Levels of a Molecule.- 2.9.2. Level Occupation at Thermal Equilibrium.- 2.9.3. Radiative and Nonradiative Transitions.- 2.9.4. Quantum Mechanical Calculation of the Radiative Transition Rates.- Problems.- References.- 3. Pumping Processes.- 3.1. Introduction.- 3.2. Optical Pumping.- 3.2.1. Pumping Efficiency.- 3.2.2. Radiative and Transfer Efficiencies.- 3.2.3. Pump Light Distribution.- 3.2.4. Absorption and Power Quantum Efficiencies.- 3.2.5. Concluding Remarks.- 3.3. Electrical Pumping.- 3.3.1. Physical Characteristics of Discharges.- 3.3.2. Electron Impact Excitation.- 3.3.2.1. Electron Impact Cross Section.- 3.3.2.2. Electron Energy Distribution.- 3.3.2.3. Spatial Distribution of the Pump Rate.- 3.3.2.4. The Ionization Balance Equation.- 3.3.2.5. Pump Rate Calculation.- 3.3.3. Excitation by (Near) Resonant Energy Transfer.- Problems.- References.- 4. Passive Optical Resonators.- 4.1. Introduction.- 4.2. Some Topics from Geometrical and Wave Optics.- 4.2.1. Matrix Formulation of Geometrical Optics.- 4.2.2. The Fabry-Perot Interferometer.- 4.2.3. Multilayer-Dielectric Coatings.- 4.3. Photon Lifetime and Cavity Q.- 4.4. Plane-Parallel Resonator.- 4.4.1. Approximate Treatment.- 4.4.2. Fox and Li Treatment.- 4.5. Confocal Resonator.- 4.6. Gaussian Beam Propagation and the ABCD Law.- 4.7. Generalized Spherical Resonator.- 4.7.1. Mode Amplitudes.- 4.7.2. Resonance Frequencies and Diffraction Losses.- 4.7.3. Stability Condition.- 4.8. Unstable Resonators.- 4.8.1. Geometrical-Optics Description.- 4.8.2. Wave-Optics Description.- 4.8.3. Advantages and Disadvantages of Hard-Edge Unstable Resonators.- 4.8.4. Variable-Reflectivity Unstable Resonators.- Problems.- References.- 5. Continuous Wave and Transient Laser Behavior.- 5.1. Introduction.- 5.2. Rate Equations.- 5.2.1. Four-Level Laser.- 5.2.2. Three-Level Laser.- 5.3. CW Laser Behavior.- 5.3.1. Four-Level Laser.- 5.3.2. Three-Level Laser.- 5.3.3. Optimum Output Coupling.- 5.3.4. Laser Tuning.- 5.3.5. Single-Mode Versus Multimode Oscillation.- 5.3.5.1. Reasons for Multimode Oscillation.- 5.3.5.2. Single-Mode Oscillation.- 5.3.6. Two Numerical Examples.- 5.3.7. Frequency Pulling and Limit to Monochromaticity.- 5.3.8. Lamb Dip and Active Stabilization of Laser Frequency.- 5.4. Transient Laser Behavior.- 5.4.1. Relaxation Oscillations in Single-Mode Lasers.- 5.4.2. Spiking Behavior of Multimode Lasers.- 5.4.3. Q Switching.- 5.4.3.1. Methods of Q Switching.- 5.4.3.2. Operating Regimes.- 5.4.3.3. Theory of Active Q Switching.- 5.4.3.4. A Numerical Example.- 5.4.4. Gain Switching.- 5.4.5. Mode Locking.- 5.4.5.1. Methods of Mode Locking.- 5.4.5.2. Mode-Locking Systems.- 5.4.6. Cavity Dumping.- 5.5. Concluding Remarks.- Problems.- References.- 6. Types of Lasers.- 6.1. Introduction.- 6.2. Solid-State Lasers.- 6.2.1. The Ruby Laser.- 6.2.2. Neodymium Lasers.- 6.2.2.1. Nd:YAG.- 6.2.2.2. Nd:Glass.- 6.2.2.3. Other Crystalline Hosts.- 6.2.3. Alexandrite Laser.- 6.3. Gas Lasers.- 6.3.1. Neutral Atom Lasers.- 6.3.1.1. Helium-Neon Lasers.- 6.3.1.2. Copper and Gold Vapor Lasers.- 6.3.2. Ion Lasers.- 6.3.2.1. Argon Laser.- 6.3.2.2. He-Cd Laser.- 6.3.3. Molecular Gas Lasers.- 6.3.3.1. The CO2 Laser.- 6.3.3.2. The CO Laser.- 6.3.3.3. The N2 laser.- 6.3.3.4. Excimer Lasers.- 6.4. Liquid Lasers (Dye Lasers).- 6.4.1. Photophysical Properties of Organic Dyes.- 6.4.2. Characteristics of Dye Lasers.- 6.5. Chemical Lasers.- 6.5.1. The HF Laser.- 6.6. Semiconductor Lasers.- 6.6.1. Photophysical Properties of Semiconductor Lasers.- 6.6.1.1. Energy States in a Semiconductor.- 6.6.1.2. Level Occupation at Thermal Equilibrium.- 6.6.1.3. Radiative and Nonradiative Transitions.- 6.6.1.4. The Quasi-Fermi Levels.- 6.6.2. Semiconductor-Laser Pumping.- 6.6.2.1. The Homojunction Laser.- 6.6.2.2. The Double-Heterojunction Laser.- 6.6.3. Semiconductor Laser Devices and Their Performance.- 6.6.4. Semiconductor Laser Applications.- 6.6.5. Simplified Theory of a Semiconductor Laser.- 6.7. Color-Center Lasers.- 6.8. The Free-Electron Laser.- 6.9. X-Ray Lasers.- 6.10. Summary of Performance Data.- Problems.- References.- 7. Properties of Laser Beams.- 7.1. Introduction.- 7.2. Monochromaticity.- 7.3. Complex Representation of Polychromatic Fields.- 7.4. Statistical Properties of Laser Light and Thermal Light.- 7.5. First-Order Coherence.- 7.5.1. Degree of Spatial and Temporal Coherence.- 7.5.2. Measurement of Spatial and Temporal Coherence.- 7.5.3. Relation Between Temporal Coherence and Monochromaticity.- 7.5.4. Nonstationary Beams.- 7.5.5. Spatial and Temporal Coherence of Single-Mode and Multimode Lasers.- 7.6. Directionality.- 7.6.1. Beams with Perfect Spatial Coherence.- 7.6.2. Beams with Partial Spatial Coherence.- 7.7. Laser Speckle.- 7.8. Brightness.- 7.9. Comparison Between Laser Light and Thermal Light.- 7.10. Higher-Order Coherence.- Problems.- References.- 8. Laser Beam Transformation: Propagation, Amplification, Frequency Conversion, Pulse Compression.- 8.1. Introduction.- 8.2. Transformation in Space: Gaussian Beam Propagation.- 8.3. Transformation in Amplitude: Laser Amplification.- 8.4. Frequency Conversion: Second-Harmonic Generation and Parametric Oscillation.- 8.4.1. Physical Picture.- 8.4.1.1. Second-Harmonic Generation.- 8.4.1.2. Parametric Oscillation.- 8.4.2. Analytical Treatment.- 8.4.2.1. Parametric Oscillation.- 8.4.2.2. Second-Harmonic Generation.- 8.5. Transformation in Time: Pulse Compression.- Problems.- References.- Appendixes.- A Semiclassical Treatment of the Interaction of Radiation with Matter.- B Space-Dependent Rate Equations.- C Theory of Active Mode Locking for a Homogeneous Line.- D Physical Constants.- Answers to Selected Problems.

「Nielsen BookData」 より

詳細情報
  • NII書誌ID(NCID)
    BA0690266X
  • ISBN
    • 0306429675
  • LCCN
    88030671
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 原本言語コード
    ita
  • 出版地
    New York
  • ページ数/冊数
    xiii, 494 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
ページトップへ