Adaptive Markov control processes
Author(s)
Bibliographic Information
Adaptive Markov control processes
(Applied mathematical sciences, v. 79)
Springer-Verlag, c1989
- : New York
- : Berlin
Available at 69 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Bibliography: p. [132]-141
Includes indexes
Description and Table of Contents
Description
This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.
Table of Contents
1 Controlled Markov Processes.- 1.1 Introduction.- 1.2 Stochastic Control Problems.- Control Models.- Policies.- Performance Criteria.- Control Problems.- 1.3 Examples.- An Inventory/Production System.- Control of Water Reservoirs.- Fisheries Management.- Nonstationary MCM's.- Semi-Markov Control Models.- 1.4 Further Comments.- 2 Discounted Reward Criterion.- 2.1 Introduction.- Summary.- 2.2 Optimality Conditions.- Continuity of ?*.- 2.3 Asymptotic Discount Optimality.- 2.4 Approximation of MCM's.- Nonstationary Value-Iteration.- Finite-State Approximations.- 2.5 Adaptive Control Models.- Preliminaries.- Nonstationary Value-Iteration.- The Principle of Estimation and Control.- Adaptive Policies.- 2.6 Nonparametric Adaptive Control.- The Parametric Approach.- New Setting.- The Empirical Distribution Process.- Nonparametric Adaptive Policies.- 2.7 Comments and References.- 3 Average Reward Criterion.- 3.1 Introduction.- Summary.- 3.2 The Optimality Equation.- 3.3 Ergodicity Conditions.- 3.4 Value Iteration.- Uniform Approximations.- Successive Averagings.- 3.5 Approximating Models.- 3.6 Nonstationary Value Iteration.- Nonstationary Successive Averagings.- Discounted-Like NVI.- 3.7 Adaptive Control Models.- Preliminaries.- The Principle of Estimation and Control (PEC).- Nonstationary Value Iteration (NVI).- 3.8 Comments and References.- 4 Partially Observable Control Models.- 4.1 Introduction.- Summary.- 4.2 PO-CM: Case of Known Parameters.- The PO Control Problem.- 4.3 Transformation into a CO Control Problem.- I-Policies.- The New Control Model.- 4.4 Optimal I-Policies.- 4.5 PO-CM's with Unknown Parameters.- PEC and NVI I-Policies.- 4.6 Comments and References.- 5 Parameter Estimation in MCM's.- 5.1 Introduction.- Summary.- 5.2 Contrast Functions.- 5.3 Minimum Contrast Estimators.- 5.4 Comments and References.- 6 Discretization Procedures.- 6.1 Introduction.- Summary.- 6.2 Preliminaries.- 6.3 The Non-Adaptive Case.- A Non-Recursive Procedure.- A Recursive Procedure.- 6.4 Adaptive Control Problems.- Preliminaries.- Discretization of the PEC Adaptive Policy.- Discretization of the NVI Adaptive Policy.- 6.5 Proofs.- The Non-Adaptive Case.- The Adaptive Case.- 6.6 Comments and References.- Appendix A. Contraction Operators.- Appendix B. Probability Measures.- Total Variation Norm.- Weak Convergence.- Appendix C. Stochastic Kernels.- Appendix D. Multifunctions and Measurable Selectors.- The Hausdorff Metric.- Multifunctions.- References.- Author Index.
by "Nielsen BookData"