Irregularities of partitions
著者
書誌事項
Irregularities of partitions
(Algorithms and combinatorics, 8)
Springer-Verlag, c1989
大学図書館所蔵 全30件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Papers from the meeting held at Fertőd, Hungary from July 7th through 11th, 1986
内容説明・目次
内容説明
The problem of uniform distribution of sequences initiated by Hardy, Little wood and Weyl in the 1910's has now become an important part of number theory. This is also true, in relation to combinatorics, of what is called Ramsey theory, a theory of about the same age going back to Schur. Both concern the distribution of sequences of elements in certain collection of subsets. But it was not known until quite recently that the two are closely interweaving bear ing fruits for both. At the same time other fields of mathematics, such as ergodic theory, geometry, information theory, algorithm theory etc. have also joined in. (See the survey articles: V. T. S6s: Irregularities of partitions, Lec ture Notes Series 82, London Math. Soc. , Surveys in Combinatorics, 1983, or J. Beck: Irregularities of distributions and combinatorics, Lecture Notes Series 103, London Math. Soc. , Surveys in Combinatorics, 1985. ) The meeting held at Fertod, Hungary from the 7th to 11th of July, 1986 was to emphasize this development by bringing together a few people working on different aspects of this circle of problems. Although combinatorics formed the biggest contingent (see papers 2, 3, 6, 7, 13) some number theoretic and analytic aspects (see papers 4, 10, 11, 14) generalization of both (5, 8, 9, 12) as well as irregularities of distribution in the geometric theory of numbers (1), the most important instrument in bringing about the above combination of ideas are also represented.
目次
1. Irregularities of Point Distribution Relative to Convex Polygons.- 2. Balancing Matrices with Line Shifts II.- 3. A Few Remarks on Orientation of Graphs and Ramsey Theory.- 4. On a Conjecture of Roth and Some Related Problems I.- 5. Discrepancy of Sequences in Discrete Spaces.- 6. On the Distribution of Monochromatic Configurations.- 7. Covering Complete Graphs by Monochromatic Paths.- 8. Canonical Partition Behavior of Cantor Spaces.- 9. Extremal Problems for Discrepancy.- 10. Spectral Studies of Automata.- 11. A Diophantine Problem.- 12. A Note on Boolean Dimension of Posets.- 13. Intersection Properties and Extremal Problems for Set Systems.- 14. On an Imbalance Problem in the Theory of Point Distribution.- 15. Problems.
「Nielsen BookData」 より