Distributions of correlation coefficients
著者
書誌事項
Distributions of correlation coefficients
Springer-Verlag, c1989
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 86-89
Includes indexes
内容説明・目次
内容説明
An important problem in personnel psychology, namely, the psychometric problem known as "validity generalization" is addressed in this volume. From a statistical point of view, the problem is how to make statements about a population correlation coefficient based on inferences from a collection of sample correlation coefficients. The first part of the book examines the largely ad hoc procedures which have been used to determine validity generalization. The second part develops a new model formulated from the perspective of finite mixture theory and, in addition, illustrates its use in several applications.
目次
1. Introduction.- 1.1 Motivation and Background.- 1.2 Conceptual Problems of Validity Generalization.- 1.3 An Alternative Formulation.- 2. A Validity Generalization Model.- 2.1 Introduction.- 2.2 Classical Test Theory.- 2.3 A Validity Generalization Random Model.- 2.4 The Joint Space of P and E.- 2.5 P and E Are Dependent Variables.- 2.6 The Distribution of R, c(r).- 2.7 Are P and E Correlated?.- 2.8 Identifiability.- 3. Estimation.- 3.1 Introduction.- 3.2 Lehmann's Classification.- 3.3 Sample Data.- 3.4 The Basic Sample Estimates.- 3.5 The Estimator SP2 = SR2 ? S*2.- 3.6 Interpreting Estimators.- 3.7 The Expectation of SR2.- 3.8 The Expectation of S*2.- 3.9 The Expectation of SP2.- 3.10 Numerical Evaluation of ?(SP2).- 3.11 The Distribution of Sp and the Power Problem.- 3.12 The Consistency of SP2.- 3.13 The Limiting Behavior of SR2.- 3.14 Multifactor Estimation Procedures.- 3.15 A Representative Multifactor Estimator.- 3.16 A Comment on Z Transformations.- 4. Summary and Discussion of Validity Generalization.- 4.1 Summary of Model Properties.- 4.2 Validity Generalization and Classical Test Theory.- 4.3 Summary of Estimation Procedures.- 4.4 Consistency and Identifiability.- 4.5 The Bayesian Connection.- 4.6 Computer Simulation Studies.- 5. A Conditional Mixture Model for Correlation Coefficients.- 5.1 Introduction.- 5.2 Finite Mixture Distributions.- 5.3 A Modeling Distribution for R.- 5.4 A Mixture Model Distribution for R.- 5.5 A Parent Distribution for Histograms of R.- 5.6 Comment.- 6. Parameter Estimation.- 6.1 Introduction.- 6.2 Estimation Equations.- 7. Examples and Applications.- 7.1 Introduction.- 7.2 Artificial Data, Example 1.- 7.3 How Many Components in the Mixture?.- 7.4 Electrical Workers, Example 2.- 7.5 Army Jobs, Example 3.- 7.6 Army Jobs, Example 4.- 7.7 College Grades, Example 5.- 7.8 Law School Test Scores and Grades, Example 6.- 8. Artifact Corrections and Model Assumptions.- 8.1 Artifact Corrections.- 8.2 Identifiability of Mixtures.- 8.3 Failure of Model Assumptions.- 8.4 Properties of the Maximum Likelihood Estimates.- 8.5 Miscellaneous Comments.- Notes.- References.- Author Index.
「Nielsen BookData」 より