Introduction to numerical linear algebra and optimisation
著者
書誌事項
Introduction to numerical linear algebra and optimisation
(Cambridge texts in applied mathematics)
Cambridge University Press, 1989
- : pbk
- タイトル別名
-
Introduction à l'analyse numérique matricielle et à l'optimisation
Exercises d'analyse numérique matricielle et d'optimisation
Numerical linear algebra and optimization
Introduction to numerical linear algebra and optimisation
大学図書館所蔵 全56件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Translation of: Introduction à l'analyse numérique matricielle et à l'optimisation and Exercises d'analyse numérique matricielle et d'optimisation
"First published in English by Cambridge University Press 1989 as Introduction to numerical linear algebra and optimisation" -- T.p. verso
Includes index
The book size of the paperback version is 23 cm
内容説明・目次
内容説明
The purpose of this book is to give a thorough introduction to the most commonly used methods of numerical linear algebra and optimisation. The prerequisites are some familiarity with the basic properties of matrices, finite-dimensional vector spaces, advanced calculus, and some elementary notations from functional analysis. The book is in two parts. The first deals with numerical linear algebra (review of matrix theory, direct and iterative methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimisation (general algorithms, linear and nonlinear programming). The author has based the book on courses taught for advanced undergraduate and beginning graduate students and the result is a well-organised and lucid exposition. Summaries of basic mathematics are provided, proofs of theorems are complete yet kept as simple as possible, and applications from physics and mechanics are discussed. Professor Ciarlet has also helpfully provided over 40 line diagrams, a great many applications, and a useful guide to further reading. This excellent textbook, which is translated and revised from the very successful French edition, will be of great value to students of numerical analysis, applied mathematics and engineering.
目次
- Preface
- Part I. Numerical Linear Algebra: 1. A summary of results on matrices
- 2. General results in the numerical analysis of matrices
- 3. Sources of problems in the numerical analysis of matrices
- 4. Direct methods for the solution of linear systems
- 5. Iterative methods for the solution of linear systems
- 6. Methods for the calculation of eigenvalues and eigenvectors
- Part II. Optimisation: 7. A review of differential calculus. Some applications
- 8. General results on optimisation. Some algorithms
- 9. Introduction to non-linear programming
- 10. Linear programming
- Bibliography and comments
- Main notations used
- Index.
「Nielsen BookData」 より