Dual models
著者
書誌事項
Dual models
Cambridge University Press, 1983
大学図書館所蔵 全16件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 153
内容説明・目次
内容説明
In Dual Models, written in the same enthusiastic style as its predecessors Polyhedron Models and Spherical Models, Magnus J. Wenninger presents the complete set of uniform duals of uniform polyhedral, thus rounding out a significant body of knowledge with respect to polyhedral forms. He begins with the simplest convex solids but then goes on to show how all the more difficult, non convex, uniform polyhedral duals can be derived from a geometric theorem on duality that unifies and systematizes the entire set of such duals. Many of these complex shapes are published here for the first time. Models made by the author are shown in photographs, and these, along with line drawings, diagrams, and commentary, invite readers to undertake the task of making the models, using index cards or tag paper and glue as construction materials. The mathematics is deliberately kept at the high school or secondary level, and hence the book presumes at most some knowledge of geometry and ordinary trigonometry and the use of a scientific type small electronic calculator. The book will be useful as enrichment material for the mathematics classroom and can serve equally well as a source book of ideas for artists and designers of decorative devices or simply as a hobby book in recreational mathematics.
目次
- Foreword John Skilling
- Preface
- Introduction
- 1. The five regular convex polyhedra and their duals
- 2. The thirteen semiregular convex polyhedra and their duals
- 3. Stellated forms of convex duals
- 4. The duals of nonconvex uniform polyhedra
- 5. Some interesting polyhedral compounds
- Epilogue
- Appendix
- References
- List of polyhedra and dual models.
「Nielsen BookData」 より