Membrane transport processes in organized systems

書誌事項

Membrane transport processes in organized systems

edited by Thomas E. Andreoli ... [et al.]

Plenum Medical Book Co., c1987

タイトル別名

Physiology of membrane disorders

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

"This volume is a reprint with minor modifications of parts IV and V of Physiology of membrane disorders, second edition, published by Plenum Medical Book Company in 1986"--T.p. verso

Includes bibliographies and index

内容説明・目次

内容説明

Membrane Transport Processes in Organized Systems is a softcover book containing portions of Physiology of Membrane Disorders (Second Edition). The parent volume contains six major sections. This text encompasses the fourth and fifth sections: Transport Events in Single Cells and Transport in Epithelia: Vectorial Transport through Parallel Arrays. We hope that this smaller volume, which deals with transport processes in single cells and in organized epithelia, will be helpful to individuals interested in general physiology, transport in single cells and epithelia, and the methods for studying those transport processes. THOMAS E. ANDREOLI JOSEPH F. HOFFMAN DARRELL D. FANESTIL STANLEY G. SCHULTZ Vll Preface to the Second Edition The second edition of Physiology of Membrane Disorders represents an extensive revision and a considerable expansion ofthe first edition . Yet the purpose of the second edition is identical to that of its predecessor, namely, to provide a rational analysis of membrane transport processes in individual membranes, cells, tissues, and organs, which in tum serves as a frame of reference for rationalizing disorders in which derangements of membrane transport processes play a cardinal role in the clinical expression of disease. As in the first edition, this book is divided into a number of individual, but closely related, sections. Part V represents a new section where the problem of transport across epithelia is treated in some detail. Finally, Part VI, which analyzes clinical derangements, has been enlarged appreciably.

目次

I: Transport Events in Single Cells.- 1: Active Transport in Escherichia coli: From Membrane to Molecule.- 1. Introduction.- 2. Membrane Vesicles and Active Transport: General Aspects.- 3. Energetics of Active Transport.- 4. Active Transport at the Molecular Level: The ?-Galactoside Transport System.- 5. Summary.- References.- 2: Acidification of Intracellular Organelles: Mechanism and Function.- 1. Introduction.- 2. Evidence for Acid Interior.- 3. Generation of ?pH.- 4. Uses of ?pH.- 5. The Nature of the ATPase.- 6. Conclusion.- References.- 3: Intracellular pH Regulation.- 1. Introduction.- 2. Measurement of Intracellular pH.- 3. Cellular Buffering Processes.- 4. Effect of Externally Applied Weak Acids and Bases.- 5. Ion-Transport Systems.- References.- 4: Properties of Ionic Channels in Excitable Membranes.- 1. Introduction.- 2. How Do You Get a Resting Potential?.- 3. How Do You Change the Membrane Potential?.- 4. Ionic Channels.- 5. The Two-State Model.- 6. Real Channels Have More Than Two States.- 7. Na+ Channels.- 8. K+ Channels.- 9. Summary.- References.- 5: Ion Movements in Skeletal Muscle in Relation to the Activation of Contraction.- 1. Introduction.- 2. The Ultrastructure of the Tubular System in Skeletal Muscle Fibers.- 3. Electrical Properties of the Surface and Tubular Membrane.- 4. Inward Spread of Excitation.- 5. Cellular Ca2+ Movements Related to the Activation of Contraction.- 6. Summary.- References.- 6: Excitable Tissues: The Heart.- 1. Introduction.- 2. Multicellular Structure of the Heart.- 3. Electrical Activity in Different Regions of the Heart.- 4. Na+ Channels and Excitability.- 5. Ca2+ Channels and Slow Responses.- 6. K+ Channels Support the Resting Potential and Action Potential Repolarization.- 7. Inward Currents and Pacemaker Activity.- 8. Adrenergic and Cholinergic Modulation of Cardiac Activity.- 9. Summary.- References.- 7: Ion Transport through Ligand-Gated Channels.- 1. Introduction and Overview.- 2. Structure of the Nicotinic AChR.- 3. Immunological Approaches to the Study of the Nicotinic AChR.- 4. Biogenesis, Membrane Localization, and Regulation.- 5. Dose-Response.- 6. Kinetics of Channel Gating.- 7. AChR Cation Selectivity and Permeation.- 8. Ligand-Gated Channels Other Than the AChR.- 9. An Emerging View of Transmitter-Activated Channels.- References.- II: Transport in Epithelia: Vectorial Transport through Parallel Arrays.- 8: Cellular Models of Epithelial Ion Transport.- 1. Introduction.- 2. Models of Sodium- and Chloride-Absorbing Epithelial Cells.- 3. A Model for Active Chloride Secretion by Epithelial Cells.- 4. Summary.- References.- 9: Ion Transport by Gastric Mucosa.- 1. Introduction.- 2. Organization of Gastric Epithelial Cells.- 3. Stimulus-Secretion Coupling in Oxyntic Cells.- 4. Metabolism and Energetics Associated with Gastric HCl Secretion.- 5. Studies with Isolated Cell Fractions and Membranes.- 6. Electrophysiological and Tracer Flux Studies of Gastric Ion Transport.- 7. Summary.- References.- 10: Ion and Water Transport in the Intestine.- 1. Introduction.- 2. Models of Intestinal Na+, Cl?, and H2O Transport.- 3. Intestinal Na+ and Cl? Absorption.- 4. Intestinal Na+ and Cl? Secretion.- 5. HCO3?, Short-Chain Fatty Acid, and K+ Transport.- 6. Shunt Pathway and Water Transport.- 7. Control of Intestinal Electrolyte Transport.- 8. Summary and Conclusions.- References.- 11: The Uptake of Lipids into the Intestinal Mucosa.- 1. Introduction.- 2. Chemical Species of Lipids That Are Involved during Fat Absorption.- 3. The Barriers to Lipid Absorption in the Intestine.- 4. Characteristics of the Intestinal Microvillus Membrane Barrier to Lipid Absorption.- 5. Characteristics of the Intestinal Unstirred Water Layer Barrier to Lipid Absorption.- 6. Characteristics of Fatty Acid and Cholesterol Absorption in the Intestine.- 7. Role of Bile Acid Micelles in Facilitating Lipid Absorption in the Intestine.- 8. Nonpolar Lipids.- 9. Summary Description of the Process of Lipid Uptake.- References.- 12: Mechanisms of Bile Secretion and Hepatic Transport.- 1. Introduction.- 2. Structural Determinants of Bile Secretory function.- 3. Mechanisms of Hepatocellular Water and Electrolyte Secretion.- 4. Other Primary Driving Forces for Canalicular Bile Secretion (Bile Acid-Independent Secretion).- 5. Model for Hepatocyte Water and Electrolyte Secretion.- 6. Physiological Modifiers of Hepatocyte Bile Formation.- 7. Organic Anion Solute Transport.- 8. Lipid Excretion in Bile.- 9. Proteins in Bile.- 10. Miscellaneous Substances Found in Bile.- 11. Bile Duct function.- 12. Summary.- References.- 13: The Regulation of Glomerular Filtration Rate in Mammalian Kidneys.- 1. Introduction.- 2. Ultrastructural Considerations.- 3. Characteristics of the Filtration Process.- 4. Quantitative Description of Glomerular Dynamics.- 5. Physiological Regulation of Glomerular Filtration Rate.- 6. Intrarenal Distribution of Glomerular Filtration Rate.- 7. Summary.- References.- 14: The Proximal Nephron.- 1. General Properties of the Proximal Nephron.- 2. Distribution of Transport Functions along the Proximal Tubule.- 3. Transepithelial Potentials and Passive Permeabilities.- 4. NaCl and NaHCO3 Transport.- 5. Solute-Solvent Coupling-Role of the Intercellular Shunt Pathway.- References.- 15: The Effects of ADH on Salt and Water Transport in the Mammalian Nephron: The Collecting Duct and Thick Ascending Limb of Henle.- 1. Introduction.- 2. Intracellular Mediators of ADH Action.- 3. The Medullary Thick Ascending Limb.- 4. The Collecting Tubule.- 5. Homology of Hormone Action.- 6. Modulation of the ADH Response.- 7. Summary: Integration of ADH Action on Urinary Concentration.- References.- 16: Urinary Concentrating and Diluting Processes.- 1. Introduction.- 2. Renal Structure.- 3. Basic Concepts.- 4. Handling of Individual Solutes in the Medulla.- 5. Properties of the Thin Limbs of Henle's Loops.- 6. Concentration in the Inner Medulla.- 7. Summary.- References.- 17: Transport Functions of the Distal Convoluted Tubule.- 1. Introduction.- 2. Structural Heterogeneity.- 3. Transepithelial Net Transport of Solutes and Water.- 4. Electrophysiological Considerations.- 5. Mechanisms of Transport.- 6. Summary.- References.- 18: The Respiratory Epithelium.- 1. Introduction.- 2. The Tracheal Epithelium.- 3. The Bronchial Epithelium.- 4. The Alveolar Epithelium.- 5. The Fetal Lung.- 6. Summary.- References.

「Nielsen BookData」 より

詳細情報

ページトップへ