Kekulé structures in benzenoid hydrocarbons
著者
書誌事項
Kekulé structures in benzenoid hydrocarbons
(Lecture notes in chemistry, 46)
Springer-Verlag, c1988
- us : pbk.
- gw : pbk.
大学図書館所蔵 件 / 全11件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Bibliography: p. [335]-346
Includes index
内容説明・目次
内容説明
This text is an attempt to outline the basic facts concerning KekulEURO structures in benzenoid hydrocarbons: their history, applica tions and especially enumeration. We further pOint out the numerous and often quite remarkable connections between this topic and various parts of combinatorics and discrete mathematics. Our book is primarily aimed toward organic and theoretical chemists interested in the enume ration of Kekule structures of conjugated hydrocarbons as well as to scientists working in the field of mathematical and computational chemistry. The book may be of some relevance also to mathematicians wishing to learn about contemporary applications of combinatorics, graph theory and other branches of discrete mathematics. In 1985, when we decided to prepare these notes for publication, we expected to be able to give a complete account of all known combi natorial formulas for the number of Kekule structures of benzenoid hydrocarbons. This turned out to be a much more difficult task than we initially realized: only in 1986 some 60 new publications appeared dealing with the enumeration of Kekule structures in benzenoids and closely related topics. In any event, we believe that we have collec ted and systematized the essential part of the presently existing results. In addition to this we were delighted to see that the topics to*which we have been devoted in the last few years nowadays form a rapidly expanding branch of mathematical chemistry which attracts the attention of a large number of researchers (both chemists and mathematicians).
目次
1 - Introduction.- 1.1 Benzenoid Hydrocarbons.- 1.2 Historical Remarks.- 1.3 Importance of Kekule Structures in the Theory of Benzenoid Hydrocarbons.- 1.3.1 General.- 1.3.2 Total ?-Electron Energy.- 1.3.3 Resonance Energies.- 1.3.4 Pauling Bond Order.- 1.3.5 Miscellaneous Applications.- 1.3.6 Kekule Structures in Molecular Orbital Theory.- 1.3.7 Kekule Structures in the Aromatic Sextet Theory.- 2 - Benzenoid Systems: Basic Concepts.- 2.1 Introduction.- 2.2 Definitions and Relations.- 2.2.1 Definition of Benzenoid Systems.- 2.2.2 Helicenic and Coronoid Systems.- 2.2.3 Vertices and Edges.- 2.2.4 Graphs.- 2.2.5 Further Definitions and Relations.- 2.2.6 Coloring of Vertices.- 2.2.7 Perfect Matchings and Kekule Structures.- 2.2.8 All-Benzenoid Systems.- 2.2.9 Modes of Hexagons.- 2.3 Classifications of Benzenoids.- 2.3.1 First Classification of Benzenoids.- 2.3.2 Second Classification of Benzenoids ("neo").- 2.3.3 Third Classification of Benzenoids (? values).- 2.3.4 Fourth Classification of Benzenoids (Symmetry).- 2.3.5 Results of Enumeration of Benzenoids.- 3 - Kekule Structures and Their Numbers: General Results.- 3.1 Introduction.- 3.2 Theorems About K Numbers.- 3.3 Vertices and Edges in Kekule Structures.- 3.4 Lower and Upper Bounds of K.- 3.5 Benzenoids with Extremal K.- 3.6 Generation of Normal Benzenoids.- 3.7 Isoarithmicity.- 4 - Introduction to the Enumeration of Kekule Structures.- 4.1 Schematic Survey.- 4.2 Empirical Methods.- 4.2.1 Systematic Drawings.- 4.2.2 Method of Fragmentation.- 4.2.3 Degenerate Systems.- 4.2.4 Modified Method of Fragmentation.- 4.3 Combinatorial Formulas, Especially for the Single Linear Chain.- 4.4 Recurrence Relations for Single Linear and Zigzag Chains.- 4.5 Summation Formulas for Single Linear and Zigzag Chains.- 4.6 Algorithms for Single Linear and Zigzag Chains.- 4.7 Combinatorial Formula for the Single Zigzag Chain.- 4.8 Treatment of a Pericondensed Benzenoid: The Parallelogram.- 4.8.1 Introduction.- 4.8.2 Algorithm.- 4.8.3 Auxiliary Benzenoid Class and Its Application.- 4.8.4 The Auxiliary Class and the Algorithm Numerals.- 4.8.5 Recurrence and Summation Formulas.- 4.9 General Remarks.- 4.10 Other Methods.- 4.10.1 Introduction.- 4.10.2 Application of Coefficients in Huckel Molecular Orbitals.- 4.10.3 Different Combinatorial Methods.- 4.10.4 Conjugated Circuits and Kekule Structures.- 4.10.5 Application of Polynomials.- 4.10.6 Analytical Expressions for the Determinant of the Adjacency Matrix.- 4.10.7 Algorithmic Formula for All-Benzenoids.- 4.10.8 Fully Computerized Method.- 4.10.9 Transfer-Matrix Method.- 4.10.10 Computer Programs.- 5 - Non-Kekulean and Essentially Disconnected Benzenoid Systems.- 5.1 Introduction.- 5.2 Introductory Examples.- 5.2.1 Concealed Non-Kekulean Benzenoids.- 5.2.2 Essentially Disconnected Benzenoids.- 5.3 The Muller-Muller-Rodloff Rule.- 5.4 Characterization of Concealed Non-Kekulean Benzenoid Systems.- 5.4.1 Introduction.- 5.4.2 First Characterization.- 5.4.3 Second Characterization.- 5.5 Segmentation.- 5.5.1 Introduction.- 5.5.2 Tracks and Partial Differences Between the Numbers of Valleys and Peaks.- 5.5.3 Characterization Based on the Numbers t and s.- 6 - Catacondensed Benzenoids.- 6.1 Previous Work.- 6.2 Single Unbranched Chain.- 6.2.1 Introductory Remarks Including some Helicenic Systems.- 6.2.2 Algorithm.- 6.2.3 Single Linear and Zigzag Chains: Combinatorial Formulas.- 6.2.4 Other Single Chains.- 6.3 Branched Chain.- 6.3.1 Systems with One Branching Hexagon.- 6.3.2 Systems with Several Branching Hexagons.- 6.4 Catacondensed Ladder.- 6.4.1 Introduction.- 6.4.2 The Case of m=2.- 6.4.3 General Case.- 6.5 Catacondensed All-Benzenoids and Related Systems.- 6.5.1 Some General Properties and Some Examples.- 6.5.2 Class with Only 2-Segments in the Backbone and Related Classes.- 6.5.3 Class with Only 3-Segments in the Backbone and Related Classes.- 6.5.4 Other All-Benzenoids and Related Systems.- 6.6 Limit Values Involving K Numbers.- 7 - Annelated Benzenoids.- 7.1 Definitions.- 7.2 Previous Work.- 7.3 Annelation to a Linear Chain.- 7.3.1 Introduction.- 7.3.2 One-Sided Annelation.- 7.3.3 Two-Sided Annelation.- 7.4 Annelation to a Zigzag Chain.- 7.5 Further Developments.- 7.5.1 Some Auxiliary Results.- 7.5.2 Further Developments of the Formulas for Two-Sided Annelations.- 7.6 Discussion of the Formulas.- 7.6.1 Even and Odd Systems.- 7.6.2 One-Sided Annelations.- 7.6.3 Two-Sided Annelations.- 7.7 Algorithm.- 7.8 Dictionary of K Numbers with Relevance to Annelation.- 7 9 Annelation of Two Single Chains.- 7.9.1 Introduction.- 7.9.2 Annelation of Two Linear Chains.- 7.9.3 Annelation of Two Chains of Which at Least One is a Zigzag Chain.- 7.9.4 Extended Application of the Algorithm.- 7.10 Annelations of Special Benzenoids.- 7.10.1 Introduction.- 7.10.2 Tabulation of Formulas.- 8 - Classes of Basic Benzenoids (I).- 8.1 Introduction.- 8.2 Hexagon.- 8.2.1 Definition.- 8.2.2 Previous Work and General Formulas.- 8.2.3 Dihedral and Regular Hexagonal Hexagons.- 8.2.4 Limit Values Involving K Numbers.- 8.3 Chevron.- 8.3.1 Definition.- 8.3.2 Previous Work and General Formulas.- 8.3.3 Algorithm.- 8.3.4 Derivation of Formulas.- 8.3.5 Mirror-Symmetrical Chevrons.- 8.3.6 Generalized Chevron.- 8.4 Ribbon.- 8.4.1 Definition.- 8.4.2 Previous Work and General Formulas.- 8.4.3 Derivation of Formulas.- 8.4.4 Algorithm.- 8.4.5 Generalized Ribbon.- 8.5 Parallelogram.- 8.5.1 Definition.- 8.5.2 Previous Work and General Formulas.- 8.5.3 Rhomb.- 8.5.4 Auxiliary Benzenoid Class.- 8.5.5 Algorithm.- 9 - Classes of Basic Benzenoids (II): Multiple Zigzag Chain.- 9.1 Definition.- 9.2 Previous Work.- 9.3 Auxiliary Benzenoid Class.- 9.4 Recurrence Relations for A (n,m) with Fixed Values of n.- 9.5 Combinatorial K Formulas for A (n,m,l) With Fixed Values of m.- 9.6 Combinatorial K Formulas for Z (m,n) With Fixed Values of m.- 9.7 The Polynomial Pm(n) = K{Z(m,n)}.- 9.8 Algorithm.- 9.8.1 Multiple Zigzag Chain, A(n,m), and the Class A(n,m,l).- 9.8.2 Truncated Multiple Zigzag Chain.- 9.9 Some General Formulations.- 9.9.1 Summation K Formulas in Terms of Auxiliary Benzenoids.- 9.9.2 Matrix Formulation.- 9.9.3 The Case of n=3.- 9.9.4 Alternative Approach.- 10 - Regular Three-, Four- and Five-Tier Strips.- 10.1 Previous Work.- 10.2 Definitions.- 10.2.1 Regular t-Tier Strip.- 10.2.2 Straight and Skew Strips: The Top-Bottom Shift.- 10.3 Classification of Regular t-Tier Strips.- 10.3.1 Series of t-Tier Strips.- 10.3.2 Types of Straight Strips.- 10.3.3 Multiple Chain.- 10.3.4 General Classification.- 10.3.5 Special Classification up to t=5.- 10.4 Examples of Non-Regular t-Tier Strips.- 10.5 Dictionary of K Formulas For Regular 3-, 4- and 5-Tier Strips.- 10.5.1 General Features.- 10.5.2 Tables.- 10.6 Methods of Derivation of K Formulas for t-Tier Strips.- 10.6.1 Schematic Survey.- 10.6.2 Application of More General Combinatorial Formulas.- 10.6.3 Stripping.- 10.6.4 Chopping.- 10.6.5 Addition of Algorithm Numerals.- 10.7 The 4-Tier Zigzag Chain.- 11 - Classes of Basic Benzenoids (III).- 11.1 Introduction.- 11.2 Pentagons.- 11.2.1 Definitions.- 11.2.2 Prolate Pentagon.- 11.2.3 Problate Pentagon.- 11.2.4 Oblate Pentagon.- 11.2.5 Mirror-Symmetrical Seven-Tier Pentagons.- 11.2.6 Auxiliary Benzenoid Classes.- 11.3 Triangles.- 11.3.1 Definitions.- 11.3.2 Previous Work and General Formulas.- 11.3.3 Triangles Without Apex.- 11.4 Streamers and Goblets.- 11.4.1 General.- 11.4.2 Streamer.- 11.4.3 Goblet.- 12 - Classes of Basic Benzenoids (IV): Rectangles.- 12.1 Definitions.- 12.2 Prolate Rectangle.- 12.3 Oblate Rectangle.- 12.3.1 Previous Work.- 12.3.2 Compilation of Some Results.- 12.3.3 Limit Values Involving K Numbers.- 12.4 Auxiliary Benzenoid Classes.- 12.5 Modified Oblate Rectangles.- 12.5.1 Introduction.- 12.5.2 Modifications of Rj(m,l).- 12.5.3 Modifications of Rj(m,2).- 12.5.4 Modifications of Rj(m,3).- 12.5.5 Modifications of Rj(m,4).- 12.5.6 Modifications of Rj(m,5).- 12.6 Some General Formulations Concerning Oblate Rectangles.- 12.6.1 Summation K Formulas in Terms of Auxiliary Benzenoids.- 12.6.2 Matrix Formulation.- 12.6.3 Further Developments.- 13 - Regular Six-Tier Strips and Related Systems.- 13.1 Introduction.- 13.2 Six-Tier Strips.- 13.2.1 Classification.- 13.2.2 Dictionary of K Formulas for Regular 6-Tier Strips.- 13.3 Supplement to the Methods of Derivation of K Formulas For t-Tier Strips.- 13.3.1 Introduction.- 13.3.2 First Example.- 13.3.3 Second Example.- 13.4 Auxiliary Benzenoid Classes.- 13.5 Two-Parameter K Formulas for Some Multiple Chains.- 13.6 Generalized Auxiliary Class.- 13.7 Etagere.- 13.8 Some Seven-Tier Strips: A Summing UP.- 14 - Determinant Formulas.- 14.1 Introduction.- 14.2 Hexagon.- 14.3 Chevron.- 14.4 Ribbon.- 14.5 Parallelogram.- 14.5.1 Parallelogram L(m,n).- 14.5.2 Parallelogram Augmented with a Row, L(n,m,l).- 14.6 Zigzag Chains.- 14.6.1 Single Zigzag Chain.- 14.6.2 Double Zigzag Chain.- 14.6.3 Multiple Zigzag Chain.- 14.6.4 Multiple Zigzag Chain Augmented with a Row.- 14.7 Pentagons.- 14.7.1 Prolate Pentagon.- 14.7.2 Problate Pentagon.- 14.7.3 Oblate Pentagon.- 14.7.4 Problate or Oblate Pentagon Augmented with a Row.- 14.8 Oblate Rectangle.- 14.8.1 Oblate Rectangle Rj(m,n).- 14.8.2 Incomplete Oblate Rectangles and Their Associated Class, B(n, 2m-2, l) and B(n, 2m-2, -l).- 14.8.3 Further Developments.- 15 - Algorithm: A Generalization.- 15.1 Introduction.- 15.2 General Principles.- 15.3 Multiple Chains.- 15.4 Multiple Chains with Truncated Rows.- 15.5 Parallelogram with Truncated and Augmented Rows.- 15.5.1 Introduction.- 15.5.2 Generalization.- 15.5.3 Algorithmic Rules.- 15.6 Constructable Benzenoids.- 16 - Pericondensed All-Benzenoids and Related Classes.- 16.1 Introductory Remarks.- 16.2 All-Benzenoid Classes Including Modifications.- 16.2.1 Introduction.- 16.2.2 Annelated Pyrenes.- 16.2.3 Pericondensed All-Benzenoid Ladder.- 16.3 Reticular All-Benzenoids.- 17 - Benzenoids with Repeated Units.- 17.1 Introduction.- 17.1.1 Previous Work and Definitions.- 17.1.2 Introductory Examples.- 17.2 Fused Repeated Units.- 17.2.1 General Formulation.- 17.2.2 Special Formulas.- 17.2.3 Formulas when U = L(k,m).- 17.2.4 Formulas for Fused and Annelated Pynenes.- 17.3 Condensed Repeated Units.- 17.3.1 Compressed Parallelograms.- 17.3.2 Compressed Rhombs.- 17.3.3 Compressed Rhombs without Corners.- 17.3.4 General Formulation.- 17.4 Benzenoids with Hexagonal and Trigonal Symmetries.- 17.4.1 Hexagonal Symmetry.- 17.4.2 Trigonal Symmetry.- 18 - Distribution of K, and Kekule Structure Statistics.- 18.1 Introduction and Previous Work.- 18.2 Distribution of K.- 18.2.1 Ranges of K.- 18.2.2 Distribution of K for Normal Benzenoids.- 18.2.3 Distribution of K for Essentially Disconnected Benzenoids.- 18.3 Average Values of K, and Related Quantities.- 18.4 Number of Normal Benzenoids with a Given K.- 18.4.1 Generation of Normal Benzenoids.- 18.4.2 Theoretical Solution.- 18.4.3 Practical Solution: Sieve Method.- 18.4.4 Listing of Results.- 18.4.5 The Fading-Out Phenomenon.
「Nielsen BookData」 より