Distributed parameter systems : theory and applications
著者
書誌事項
Distributed parameter systems : theory and applications
(Oxford mathematical monographs)
Ohmsha , Clarendon Press , Oxford University Press, 1989
大学図書館所蔵 全36件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index and bibliographies
内容説明・目次
内容説明
Many problems in control and systems theory are formulated in terms of partial differential equations and these are known as distributed parameter systems. This book aims to present the major aspects of the control, estimation and identification of distributed parameter sytems. The book was written for all those applied mathematicians, control theorists and engineers whose work involves such systems and the authors have tried to present a comprehensive account of the essential results in both deterministic and stochastic systems. Part one develops the mathematical theory of distributed parameter systems. The results of the theory of deterministic and stochastic partial differential equations are developed and then applied to the optimal control and estimation theories for the distributed parameter systems. Controllability and observability problems are also discussed. Part two contains applications of the theory to engineering problems. The optimal sensor and actuator location problems are discussed from the engineering viewpoint. There then follows a treatment of computational techniques for the identification of distributed parameter systems.
The book is intended for applied mathematicians, control theorists and engineers interested in distributed parameter systems.
目次
- Part 1 Mathematical theory: some basic results in the theory of partial differential equations - Bellman-Gronwall inequality, Sobolev spaces, Green's formula
- stochastic partial differential equations - radon measures, cylindrical probability, Gaussian cylindrical probability, nuclear and Hilbert-Schmidt operators, conditional expectation, Hilbert- space-valued Wiener processes
- optimal control of deterministic distributed parameter systems - elliptic systems, the Dirichlet problem, the Neumann problem, parabolic systems, Riccati equation, Hamilton-Jacobi equation, hyperbolic systems
- controllability and observability
- linear estimation theory - finite-dimensional estimation theory, estimation for random linear functionals
- optimal filter for distributed parameter systems - the filtering problems, Wiener filter, Kalman-Bucy filter, recursive formula for the optimal filter, innovation theory, duality between estimation and control, optimal filter for hyperbolic systems
- stochastic optimal control of distributed parameter systems
- formulation of the model, the stochastic optimal control problem, necessary and sufficient conditions for optimality, the separation principle
- identification of distributed parameter systems - the basic concept of system identification, modal approximation for identification, regularization. Part 2 Engineering Applications: formal approach to optimal filtering and control of distributed parameter systems - Wiener-Hopf theorem, the optimal filter, predictor and smoothing estimator, various approaches to linear estimation problems
- stochastic optimal control problems
- optimal sensor and actuator location problems - optimal sensor location problems, optimal actuator locations
- computational techniques for identification of distributed parameter systems - stochastic approximation, least squares identification, the Galerkin finite-element model, discrete regularization and minimization.
「Nielsen BookData」 より