General theory of irregular curves
著者
書誌事項
General theory of irregular curves
(Mathematics and its applications, . Soviet series ; v. 29)
Kluwer Academic Publishers, c1989
- タイトル別名
-
Irregular curves
大学図書館所蔵 全28件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 285-286
Includes index
内容説明・目次
内容説明
One service mathematics has rendered the "Et moi, ...si j'a\'ait su comment en revenir, human race. It has put common sense back je n'y scrais point alit: Jules Verne where it belongs, on the topmost shelf next to the dusty canister labc\led 'discarded non- The series is divergent; therefore we may be sense'. Eric T. 8c\l able to do something with it. O. Hcaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
目次
I: General Notion of a Curve.- 1.1. Definition of a Curve.- 1.2. Normal Parametrization of a Curve.- 1.3. Chains on a Curve and the Notion of an Inscribed Polygonal Line.- 1.4. Distance Between Curves and Curve Convergence.- 1.5. On a Non-Parametric Definition of the Notion of a Curve.- II: Length of a Curve.- 2.1. Definition of a Curve Length and its Basic Properties.- 2.2. Rectifiable Curves in Euclidean Spaces.- 2.3. Rectifiable Curves in Lipshitz Manifolds.- III: Tangent and the Class of One-Sidedly Smooth Curves.- 3.1. Definition and Basic Properties of One-Sidedly Smooth Curves.- 3.2. Projection Criterion of the Existence of a Tangent in the Strong Sense.- 3.3. Characterizing One-Sidedly Smooth Curves with Contingencies.- 3.4. One-Sidedly Smooth Functions.- 3.5. Notion of c-Correspondence. Indicatrix of Tangents of a Curve.- 3.6. One-Sidedly Smooth Curves in Differentiable Manifolds.- IV: Some Facts of Integral Geometry.- 4.1. Manifold Gnk of k-Dimensional Directions in Vn.- 4.2. Imbedding of Gnk into a Euclidean Space.- 4.3. Existence of Invariant Measure of Gnk.- 4.4. Invariant Measure in Gnk and Integral. Uniqueness of an Invariant Measure.- 4.5. Some Relations for Integrals Relative to the Invariant Measure in Gnk.- 4.6. Some Specific Subsets of Gnk.- 4.7. Length of a Spherical Curve as an Integral of the Function Equal to the Number of Intersection Points.- 4.8. Length of a Curve as an Integral of Lengths of its Projections.- 4.9. Generalization of Theorems on the Mean Number of the Points of Intersection and Other Problems.- V: Turn or Integral Curvature of a Curve.- 5.1. Definition of a Turn. Basic Properties of Curves of a Finite Turn.- 5.2. Definition of a Turn of a Curve by Contingencies.- 5.3. Turn of a Regular Curve.- 5.4. Analytical Criterion of Finiteness of a Curve Turn.- 5.5. Basic Integra-Geometrical Theorem on a Curve Turn.- 5.6. Some Estimates and Theorems on a Limiting Transition.- 5.7. Turn of a Curve as a Limit of the Sum of Angles Between the Secants.- 5.8. Exact Estimates of the Length of a Curve.- 5.9. Convergence with a Turn.- 5.10 Turn of a Plane Curve.- VI: Theory of a Turn on an n-Dimensional Sphere.- 6.1. Auxiliary Results.- 6.2. Integro-Geometrical Theorem on Angles and its Corrolaries.- 6.3. Definition and Basic Properties of Spherical Curves of a Finite Geodesic Turn.- 6.4. Definition of a Geodesic Turn by Means of Tangents.- 6.5. Curves on a Two-Dimensional Sphere.- VII: Osculating Planes and Class of Curves with an Osculating Plane in the Strong Sense.- 7.1. Notion of an Osculating Plane.- 7.2. Osculating Plane of a Plane Curve.- 7.3. Properties of Curves with an Osculating Plane in the Strong Sense.- VIII: Torsion of a Curve in a Three-Dimensional Euclidean Space.- 8.1. Torsion of a Plane Curve.- 8.2. Curves of a Finite Complete Torsion.- 8.3. Complete Two-Dimensional Indicatrix of a Curve of a Finite Complete Torsion.- 8.4. Continuity and Additivity of Absolute Torsion.- 8.5. Definition of an Absolute Torsion Through Triple Chains and Paratingences.- 8.6. Right-Hand and Left-Hand Indices of a Point. Complete Torsion of a Curve.- IX: Frenet Formulas and Theorems on Natural Parametrization.- 9.1. Frenet Formulas.- 9.2. Theorems on Natural Parametrization.- X: Some Additional Remarks.- References.
「Nielsen BookData」 より