Unitary representations and harmonic analysis : an introduction
著者
書誌事項
Unitary representations and harmonic analysis : an introduction
(North-Holland mathematical library, v. 44)
North-Holland , Kodansha, 1990
2nd ed
- : North-Holland
- : Kodansha
大学図書館所蔵 全53件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. 417-448
Includes index
内容説明・目次
内容説明
The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou's theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.
目次
Fourier Series and the Torus Group T. Introduction. Fundamental Definitions. Unitary Representations of Compact groups. Fourier Series of Square Integrable Functions. Fourier Series of Smooth Functions and Distributions. Representations of SU(2) and SO(3). Construction of Irreducible Representations of SU(2). Characters of Compact Groups. Haar Measures on SU(2). Enumeration of Irreducible Representations. Lie Algebras and Their Representations. Fourier Series on SU(2). Representations of SO(3) and Spherical Harmonics. Fourier Series on Compact Lie Groups. The Fourier Transform and Unitary Representations of Rn. Rapidly Decreasing Functions. The Plancherel Theorem and the Decomposition of the Regular Representation. Positive Definite Functions and Stone's Theorem. The Paley-Wiener Theorem. Tempered Distributions and Their Fourier Transforms. The Euclidean Motion Group. Construction of Irreducible Representations. Classification of Irreducible Unitary Representations. Fourier Transforms of Rapidly Decreasing Functions. The Plancherel Theorem. Determinations of (G) and D(G). Unitary Representation of SL(2, R). The Iwasawa Decomposition. Irreducible Unitary Representations: I. Principal Continuous Series. II. Principal Discrete Series. III. The Limit of Discrete Series. IV. Complementary Series. K-Finite Vectors. Classification of Irreducible Unitary Representations. The Characters. Inversion Formula. Harmonic Analysis of Zonal Functions. Irreducible Unitary Representations of SL (2, R): I. Discrete Series. II. Complementary Series. III. Principal Continuous Series. Appendix. Bibliography. Index.
「Nielsen BookData」 より