Fractal geometry : mathematical foundations and applications
著者
書誌事項
Fractal geometry : mathematical foundations and applications
Wiley, c1990
- : hbk
- : pbk
並立書誌 全1件
大学図書館所蔵 全108件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 278-283) and index
内容説明・目次
- 巻冊次
-
: hbk ISBN 9780471922872
内容説明
An accessible introduction to fractals, useful as a text or reference. Part I is concerned with the general theory of fractals and their geometry, covering dimensions and their methods of calculation, plus the local form of fractals and their projections and intersections. Part II contains examples of fractals drawn from a wide variety of areas of mathematics and physics, including self-similar and self-affine sets, graphs of functions, examples from number theory and pure mathematics, dynamical systems, Julia sets, random fractals and some physical applications. Also contains many diagrams and illustrative examples, includes computer drawings of fractals, and shows how to produce further drawings for themselves.
目次
FOUNDATIONS. Mathematical Background. Hausdorff Measure and Dimension. Alternative Definitions of Dimension. Techniques for Calculating Dimensions. Local Structure of Fractals. Projections of Fractals. Products of Fractals. Intersections of Fractals. APPLICATIONS AND EXAMPLES. Fractals Defined by Transformations--Self-Similar and Self-Affine Sets. Examples from Number Theory. Graphs of Functions. Examples from Pure Mathematics. Dynamical Systems. Iteration of Complex Functions--Julia Sets. Random Fractals. Brownian Motion and Brownian Surfaces. Multifractal Measures. Physical Applications. References. Index.
- 巻冊次
-
: pbk ISBN 9780471967774
内容説明
This paperback edition of Fractal Geometry provides an accessible treatment of the mathematics of fractals and their dimensions. It is aimed at those wanting to use fractals in their own areas of mathematics or science. The first part of the book covers the general theory of fractals and their geometry. Results are stated precisely, but technical measure theoretic ideas are avoided and difficult proofs are sketched. The second part contains a wide variety of examples and applications in mathematics and physics. The book contains numerous diagrams and illustrative examples. Each chapter ends with self-study exercises and suggestions for further reading. The author provides an intuitive as well as a mathematical insight into the subject.
目次
- Part I Foundations: mathematical background
- Hausdorff measure and dimension
- alternative definitions of dimension
- techniques for calculating dimensions
- local structure of fractals
- projections of fractals
- products of fractals
- intersections of fractals. Part II Applications and examples: fractals defined by transformations
- examples from number theory
- graphs of functions
- examples from pure mathematics
- dynamical systems
- iteration of complex functions-Julia sets
- random fractals
- Brownian motion and Brownian surfaces
- multifractal measures
- physical applications.
「Nielsen BookData」 より