Soliton phenomenology
著者
書誌事項
Soliton phenomenology
(Mathematics and its applications, . Soviet series ; v. 33)
Kluwer Academic, c1990
大学図書館所蔵 全39件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographies and index
内容説明・目次
内容説明
'Et moi, ..., si j'avait Sll comment en revemr, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
目次
References.- I. Quantum Systems and Classical Behaviour.- 1. Some physical models and nonlinear differential equations.- 1. Magnetic chain (the Heisenberg model).- 2. Magnetic chain with magnon-phonon interaction.- 3. Nonlinearity of exchange integrals andphonon anharmonism in the Heisenberg model.- 4. Anisotropic magnetic chain in an external field breaking U(1)(XY) symmetry.- 5. Generalized Hubbard model.- 6. Low frequency wave interaction with a packet of h.f. waves in plasmas.- 7. The ?5Schroedinger equation as a model to describe collective motions in nuclei.- 8. 'Colour' generalization of a magnetic chain with magnon-phonon interaction.- 9. Multicolour Hubbard model.- 2. Physically interesting nonlinear differential equations.- 1. Equations with quadratic dispersion.- 2. Equations with 'linear' dispersion.- 3. Relativistically-invariant equations.- 4. Dynamical systems given by differential-difference equations.- References.- II. Some Exact Results in One-Dimensional Space.- 3. The Nonlinear Schroedinger equation and the Landau-Lifshitz equation.- 1. NSE associated with a symmetric space.- 2. The Sigma model representation of the NSE and the isotropic Landau-Lifshitz equation.- 3. Gauge connections of the LLE with uniaxial anisotropy and the NSE.- 4. Nonlinear Schroedinger equation with U(p,q) internal symmetry and the SG equation.- 1. Equations of motion and the internal symmetry group.- 2. U(p,q) NSE under trivial boundary conditions.- 3. The U(1,0) model.- 4. The U(0,1) model.- 5. The U(1,1) model.- 6. Quasi-classical quantization of the U(1,1) NSE.- 7. The SG equation.- References.- III. Noncompact Symmetries and Bose Gas.- 5. Dynamical symmetry and generalized coherent states.- 1. Bose gas and dynamical symmetry group.- 2. Quantum version (GCS).- 3. Quantum version. The representation in the form of a path integral over GCS.- 4. Quantum version. Some concrete models with dynamical symmetry.- 5. Weakly nonideal Bose gas. A classical approach.- 6. Bose gas, integrable NSE and Landau-Lifshitz models.- 1. Quantum models and nonlinear classical models corresponding to them. A new formulation of the reduction procedure.- 2. Nonlinear one-dimensional integrable models.- 3. The isotropic Landau-Lifshitz SU(1,1) model.- 4. Bose gas models and nonlinear sigma models. Summary.- 5. The third version - The sigma-model representation connected with the nonlinear Schroedinger equation.- 6. On the reduction procedure.- 7. ?6theory and Bose-drops.- 1. General relations and solitons - drops (particle-like solutions).- 2. Condensate states and their weak excitations.- 3. Localized soliton-like excitations of the condensate.- References.- IV. Soliton-Like Solutions in One-Dimension.- 8. The class of soliton solutions to the vector version of NSE with self-consistent potentials.- 1. Soliton solutions to the U(n) NSE. Linearization method.- 2. U(2) NSE. Dubrovin-Krichever technique.- 3. The self-consistent conditions.- 4. U(2) NSE. A modification of the Dubrovin-Krichever technique.- 5. U(n) system with the Boussinesq potential.- 9. The existence of soliton-like solutions.- 1. Virial relations.- 2. Mechanical analogy method.- 10. Soliton stability.- 1. Stability of hole-like excitations in the ?6model of nonlinear Schroedinger equation. The spectral analysis.- 2. Stability of drop-like solitons. Variational methods.- 3. Structural stability.- References.- V. Phenomenology of D = 1 Solitons.- 11. Dynamics of the formation and interaction of plane solitons.- 1. Computational procedures.- 2. KdV-like equations.- 3. NSE-like equations.- 4. Equation for induced processes.- 5. Relativistically invariant equations (RIE).- 6. Bound states of solitons (bions).- 7. Kink-antikink interactions in the ?4model.- 8. Kink-antikink collisions in the MSG model.- 9. Bions in the ?4-theory.- 10. Small-amplitude expansions.- 12. Structural stability and pinning of solitons.- 1. Static bound states.- 2. Bifurcational perturbation theory.- 3. Static states of the long Josephson junction with a single inhomogeneity.- 4. Passing region.- 13. Dynamical structure factors of soliton gas.- 1. General technique to calculate the dynamical formfactors of solitons.- 2. Dynamic structure factor scattering on a soliton gas. The SG model: phenomenological approach.- 3. CsNiF3and the SG model.- 4. The ideal gas phenomenology and the ?4-model.- 5. Soliton gas kinetics.- 6. Turbulence of a soliton gas.- References.- VI. Many-Dimensional Solitons.- 14. Existence and stability.- 1. Existence.- 2. Quasi-stationary solitons.- 3. Stability of many-dimensional stationary solitons.- 4. Static ring-shaped fluxons (the structure stability).- 15. Pulsons and Q-solitons.- 1. Collapse of circular and spherical bubbles.- 2. Properties of pulsons.- 3. Pulson stability.- 4. Pulson interaction.- 16. Interaction of Q-solitons.- 1. Nonrelativistic models.- 2. Relativistic models.- 3. Formfactors and DSF.- References.
「Nielsen BookData」 より