Integral equations and numerical methods
著者
書誌事項
Integral equations and numerical methods
(Mathematical analysis and numerical methods for science and technology / Robert Dautray, Jacques-Louis Lions, v. 4)
Springer-Verlag, c1990
- : gw
- : us
- タイトル別名
-
Analyse mathématique et calcul numérique pour les sciences et les techniques
大学図書館所蔵 全108件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [427]-440
Includes index
内容説明・目次
内容説明
The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.
目次
- X. Mixed Problems and the Tricomi Equation.- 1. Description and Formulation of the Problem.- 1. Stationary Plane Flow of a Compressible Fluid.- 2. Solution in the Hodograph Plane
- The Frankl' Equation.- 2. Methods for Solving Problems of Mixed Type.- 1. An Example of a Well-Posed Boundary Value Problem for the Frankl' Equation.- 2. Particular Solutions.- 3. Existence and Uniqueness Results.- Bibliographic Commentary.- XI. Integral Equations.- A. Solution Methods Using Analytic Functions and Sectionally Analytic Functions.- 1. The Wiener-Hopf Method.- Wiener-Hopf Equations.- 1. The Wiener-Hopf Method.- 2. Decomposition of an Analytic Function Defined in a Strip in the Complex Plane.- 3. Factorisation of an Analytic Function Defined in a Strip in the Complex Plane.- 4. Application to the Wiener-Hopf Integral Equation of the Second Kind.- 5. Application to the Milne Problem.- 6. Application to the Dock Problem.- 2. Sectionally Analytic Functions.- 1. S. Analytic Functions.- 2. Cauchy Integrals and Plemelj Formulas.- 3. The Poincare-Bertrand Formula and the Hilbert Inversion Formula.- 3. The Hilbert Problem.- 1. The Hilbert Problem in the Case where L is a Contour.- 2. The Hilbert Problem in the Case where L is an Arc.- 3. The Hilbert Problem in the Case of a Straight Line.- 4. Some Problems Reducible to a Hilbert Problem.- 4. Application to Some Problems in Physics.- 1. Simple Layer and Double Layer Problems.- 2. Determination of the Charge Density on the Surface of a Cylindrical Body at Potential V.- 3. The Problem of the Thin Aerofoil Profile.- 4. Plane Elasticity and the Biharmonic Equation.- B. Integral Equations Associated with Elliptic Boundary Value Problems in Domains in ?3.- 1. Study of Certain Weighted Sobolev Spaces.- 2. Integral Equations Associated with the Boundary Value Problems of Electrostatics.- 1. Integral Representations.- 2. Dirichlet Problems Relative to the Operator ?.- 3. Neumann Problems Relative to the Operator ?.- 3. Integral Equations Associated with the Helmholtz Equation.- 4. Integral Equations Associated with Problems of Linear Elasticity.- 5. Integral Equations Associated with the Stokes System.- XII. Numerical Methods for Stationary Problems.- 1. The Basic Ideas of Finite Difference Methods and Finite Element Methods.- 2. Comparison of the Two Methods. Field of Applications of the Finite Element Method.- 3. The Different Topics Treated in this Chapter XII.- 4. The Lax-Milgram Theorem and Sobolev Spaces.- 1. Principal Aspects of the Finite Element Method Applied to the Problem of Linear Elasticity.- 1. Variational Formulation of the Continuous Problem.- 2. Construction of Approximation Function Spaces.- 3. The First Approximation Problem (Ph1).- 4. Numerical Quadrature Schemes and the Definition of the Second Approximation Problem (Ph2).- 5. Error Estimates.- 6. Numerical Implementation.- 2. Treatment of Domains with Curved Boundaries.- 1. "Exact" Triangulation of the Domain ?.- 2. Construction of an "Approximate" Triangulation of the Domain ?.- 3. Examples of the Construction of the Mappings FK.- 4. Definition of Curved Finite Elements of Class ?0.- 5. Estimation of the Interpolation Error.- 6. Application to the Solution of the Problem of Plane Linear Elasticity.- 3. A Non Conforming Method of Finite Elements.- 1. The Wilson Finite Element.- 2. Estimation of the Interpolation Error.- 3. The Space Xh of Finite Elements.- 4. The Discrete Problem. Abstract Error Estimate.- 5. The Bilinear Lemma.- 6. Estimation of the Error $$ \parallel \vec{u} - {\vec{u}_h}{\parallel_h} $$.- 4. Applications to the Problems of Plates and Shells.- 1. Approximation of the Problems of Plates.- 2. Approximation of the Problems of Shells.- 5 Approximation of Eigenvalues and Eigenvectors.- 1. Some Results from the Spectral Theory of Differential Operators.- 2. The Approximate Problem.- 3. Estimation of the Errors $$ \left| {<!-- -->{<!-- -->{\vec{\lambda }}_j} - {<!-- -->{\vec{\lambda }}_{<!-- -->{hj}}}} \right|,1 \leqslant j \leqslant 3{M_h} $$.- 4. Estimation of the Errors $$ \parallel {\vec{u}_j} - {\vec{u}_{<!-- -->{hj}}}\parallel, 1 \leqslant j \leqslant 3{M_h} $$.- 5. Numerical Solutions.- 6. An Example of the Approximate Calculation for a Problem of the Eigenvalues of a Non Self-Adjoint Operator.- 1. The Neutron Diffusion Equations Recalled.- 2. The Critical Problem with Two Energy Groups.- 3. Determination of the Positive Solution.- 4. Extension to the Case Where the Number of Neutron (Kinetic) Energy Groups is Greater than Two.- 5. The Eigenvalue Problem Connected with the Evolution Problem of Neutron Diffusion.- 6. Some Comments.- Review of Chapter XII.- XIII. Approximation of Integral Equations by Finite Elements. Error Analysis.- 1. The Case of a Polyhedral Surface.- 1. The Simple Layer Potential Case for the Dirichlet Problem.- 2. Study of the Potential of a Double Layer for the Neumann Problem in ?3.- 3. Study of the Exterior Neumann Problem Represented by a Simple Layer.- 2. The Case of a Regular Closed Surface.- 1. The Approximation of Surfaces.- 2. Notions on the Error Generated by the Approximation of the Surface.- Appendix. "Singular Integrals".- 1. Operator, Convolution Operator, Integral Operator.- 2. The Hilbert Transformation.- 3. Generalities on Singular Integral Operators.- 5. The Calderon-Zygmund Theorem.- 6. Marcinkiewicz Spaces.- 1. Definitions.- 2. Application to the Homogeneous Convolution Kernel.- 4. Operators of Weak Type. The Marcinkiewicz Theorem.- 5. The Maximal Hardy-Littlewood Operator..- Proof of Lemma 1 in 2.- Table of Notations.- of Volumes1-3, 5, 6.
「Nielsen BookData」 より