Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty
著者
書誌事項
Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty
(Theory and decision library, ser. D . System theory,
Kluwer Academic, c1990
大学図書館所蔵 全55件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.
目次
I. The General Framework.- 1. Multiobjective programming under uncertainty : scope and goals of the book.- 2. Multiobjective programming : basic concepts and approaches.- 3. Stochastic programming : numerical solution techniques by semi-stochastic approximation methods.- 4. Fuzzy programming : a survey of recent developments.- II. The Stochastic Approach.- 1. Overview of different approaches for solving stochastic programming problems with multiple objective functions.- 2. "STRANGE" : an interactive method for multiobjective stochastic linear programming, and "STRANGE-MOMIX" : its extension to integer variables.- 3. Application of STRANGE to energy studies.- 4. Multiobjective stochastic linear programming with incomplete information : a general methodology.- 5. Computation of efficient solutions of stochastic optimization problems with applications to regression and scenario analysis.- III. The Fuzzy Approach.- 1. Interactive decision-making for multiobjective programming problems with fuzzy parameters.- 2. A possibilistic approach for multiobjective programming problems. Efficiency of solutions.- 3. "FLIP" : an interactive method for multiobjective linear programming with fuzzy coefficients.- 4. Application of "FLIP" method to farm structure optimization under uncertainty.- 5. "FULPAL" : an interactive method for solving (multiobjective) fuzzy linear programming problems.- 6. Multiple objective linear programming problems in the presence of fuzzy coefficients.- 7. Inequality constraints between fuzzy numbers and their use in mathematical programming.- 8. Using fuzzy logic with linguistic quantifiers in multiobjective decision making and optimization: A step towards more human-consistent models.- IV. Stochastic Versus Fuzzy Approaches and Related Issues.- 1. Stochastic versus possibilistic multiobjective programming.- 2. A comparison study of "STRANGE" and "FLIP".- 3. Multiobjective mathematical programming with inexact data.
「Nielsen BookData」 より