Bibliographic Information

Stratabound ore deposits in the Andes

edited by L. Fontboté ... [et al.]

(Special publication ... of the Society for Geology Applied to Mineral Deposits, no. 8)

Springer-Verlag, c1990

  • gw
  • us

Available at  / 3 libraries

Search this Book/Journal

Note

Includes bibliographical references

One sheet of map in back pocket

Description and Table of Contents

Description

The history of continued fractions is certainly one of the longest among those of mathematical concepts, since it begins with Euclid's algorithm for the great est common divisor at least three centuries B.C. As it is often the case and like Monsieur Jourdain in Moliere's "Ie bourgeois gentilhomme" (who was speak ing in prose though he did not know he was doing so), continued fractions were used for many centuries before their real discovery. The history of continued fractions and Pade approximants is also quite im portant, since they played a leading role in the development of some branches of mathematics. For example, they were the basis for the proof of the tran scendence of 11' in 1882, an open problem for more than two thousand years, and also for our modern spectral theory of operators. Actually they still are of great interest in many fields of pure and applied mathematics and in numerical analysis, where they provide computer approximations to special functions and are connected to some convergence acceleration methods. Con tinued fractions are also used in number theory, computer science, automata, electronics, etc ...

Table of Contents

1 The Early Ages.- 1.1 Euclid's algorithm.- 1.2 The square root.- 1.3 Indeterminate equations.- 1.4 History of notations.- 2 The First Steps.- 2.1 Ascending continued fractions.- 2.2 The birth of continued fractions.- 2.3 Miscellaneous contributions.- 2.4 Pell's equation.- 3 The Beginning of the Theory.- 3.1 Brouncker and Wallis.- 3.2 Huygens.- 3.3 Number theory.- 4 Golden Age.- 4.1 Euler.- 4.2 Lambert.- 4.3 Lagrange.- 4.4 Miscellaneous contributions.- 4.5 The birth of Pade approximants.- 5 Maturity.- 5.1 Arithmetical continued fractions.- 5.1.1 Algebraic properties.- 5.1.2 Arithmetic.- 5.1.3 Applications.- 5.1.4 Number theory.- 5.1.5 Convergence.- 5.2 Algebraic continued fractions.- 5.2.1 Expansion methods and properties.- 5.2.2 Examples and applications.- 5.2.3 Orthogonal polynomials.- 5.2.4 Convergence and analytic theory.- 5.2.5 Pade approximants.- 5.3 Varia.- 6 The Modern Times.- 6.1 Number theory.- 6.2 Set and probability theories.- 6.3 Convergence and analytic theory.- 6.4 Pade approximants.- 6.5 Extensions and applications.- Documents.- Document 1: L'algebre des geometres grecs.- Document 2: Histoire de l'Academie Royale des Sciences.- Document 3: Encyclopedie (Supplement).- Document 4: Elementary Mathematics from an advanced standpoint.- Document 5: Sur quelques applications des fractions continues.- Document 6: Rapport sur un Memoire de M. Stieltjes.- Document 7: Correspondance d'Hermite et de Stieltjes.- Document 8: Notice sur les travaux et titres.- Document 9: Note annexe sur les fractions continues.- Scientific Bibliography.- Works.- Historical Bibliography.- Name Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

Page Top